References
- 1Penny WD, Litvak V, Fuentemilla L, Duzel E, Friston K. Dynamic Causal Models for phase coupling. Journal of Neuroscience Methods. 2009;183(1):19–30. DOI: 10.1016/j.jneumeth.2009.06.029
- 2Winfree A. The Geometry of Biological Time. Biomathematics, Berlin: Springer Verlag; 1980. ISBN 9783540093732. DOI: 10.1007/978-3-662-22492-2
- 3Pikovsky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge nonlinear science series. Cambridge University Press; 2001. ISBN 9780511075957. DOI: 10.1017/CBO9780511755743
- 4Strogatz S. Sync: The Emerging Science of Spontaneous Order. Penguin Books Limited; 2004. ISBN 9780141933184.
- 5Buzsaki G. Rhythms of the Brain. Oxford University Press; 2006. ISBN 9780198041252.
- 6Kuramoto Y. Chemical Oscillations, Waves, and Turbulence, volume 19. Berlin, Heidelberg: Springer Berlin Heidelberg; 1984. ISBN 978-3-642-69691-6. DOI: 10.1007/978-3-642-69689-3
- 7Hoppensteadt FC, Izhikevich EM. Weakly Connected Neural Networks, volume 126 of Applied Mathematical Sciences. New York, NY: Springer New York; 1997. ISBN 978-1-4612-7302-8. DOI: 10.1007/978-1-4612-1828-9
- 8Rosenblum MG, Pikovsky AS. Detecting direction of coupling in interacting oscillators. Physical Review E. Statistical, Nonlinear, and Soft Matter Physics. 2001;64(4 Pt 2):
045202 . DOI: 10.1103/PhysRevE.64.045202 - 9Kralemann B, Cimponeriu L, Rosenblum M, Pikovsky A, Mrowka R. Uncovering interaction of coupled oscillators from data. Physical Review E. 2007;76(5):1–4. DOI: 10.1103/PhysRevE.76.055201
- 10Kralemann B, Cimponeriu L, Rosenblum M, Pikovsky A, Mrowka R. Phase dynamics of coupled oscillators reconstructed from data. Physical Review E 2008;77(6):1–16. DOI: 10.1103/PhysRevE.77.066205
- 11Kralemann B, Pikovsky A, Rosenblum M. Reconstructing phase dynamics of oscillator networks. Chaos. 2011;21(2):1–10. DOI: 10.1063/1.3597647
- 12Stankovski T, Duggento A, McClintock PV, Stefanovska A. Inference of time-evolving coupled dynamical systems in the presence of noise. Physical Review Letters. 2012;109(2):1–5. DOI: 10.1103/PhysRevLett.109.024101
- 13Kralemann B, Pikovsky A, Rosenblum M. Detecting triplet locking by triplet synchronization indices. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 2013;87(5):1–6. DOI: 10.1103/PhysRevE.87.052904
- 14Kralemann B, Pikovsky A, Rosenblum M. Reconstructing effective phase connectivity of oscillator networks from observations. New Journal of Physics. 2014;16(8):
085013 . DOI: 10.1088/1367-2630/16/8/085013 - 15Stankovski T, Ticcinelli V, McClintock PVE, Stefanovska A. Coupling functions in networks of oscillators. New Journal of Physics. 2015;17(3):
035002 . DOI: 10.1088/1367-2630/17/3/035002 - 16Stankovski T, Pereira T, McClintock PVE, Stefanovska A. Coupling functions: Universal insights into dynamical interaction mechanisms. Reviews of Modern Physics. 2017;89(4):
045001 . DOI: 10.1103/RevModPhys.89.045001 - 17Pikovsky A. Reconstruction of a random phase dynamics network from observations. Physics Letters, Section A: General, Atomic and Solid State Physics. 2018;382(4):147–152. DOI: 10.1016/j.physleta.2017.11.012
- 18Stankovski T, Pereira T, McClintock PV, Stefanovska A. Coupling functions: Dynamical interaction mechanisms in the physical, biological and social sciences. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2019;377(2160). DOI: 10.1098/rsta.2019.0039
- 19Yeldesbay A, Fink GR, Daun S. Reconstruction of effective connectivity in the case of asymmetric phase distributions. Journal of Neuroscience Methods. 2019;317(February):94–107. DOI: 10.1016/j.jneumeth.2019.02.009
- 20Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003;19(4):1273–1302. DOI: 10.1016/S1053-8119(03)00202-7
- 21Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W. Variational free energy and the Laplace approximation. NeuroImage. 2007;34(1):220–234. DOI: 10.1016/j.neuroimage.2006.08.035
- 22Friston K, Ashburner J, Kiebel S, Nichols T, Penny W, editors. Statistical Parametric Mapping. Elsevier; 2007. ISBN 9780123725608. DOI: 10.1016/B978-0-12-372560-8.X5000-1
- 23David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ. Dynamic causal modeling of evoked responses in EEG and MEG. NeuroImage. 2006;30(4):1255–1272. DOI: 10.1016/j.neuroimage.2005.10.045
- 24Chen CC, Kiebel SJ, Friston KJ. Dynamic causal modelling of induced responses. NeuroImage. 2008;41(4):1293–1312. DOI: 10.1016/j.neuroimage.2008.03.026
- 25Chen CC, Kiebel SJ, Kilner JM, Ward NS, Stephan KE, Wang WJ, Friston KJ. A dynamic causal model for evoked and induced responses. NeuroImage. 2012;59(1):340–348. DOI: 10.1016/j.neuroimage.2011.07.066
- 26Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HEM, Breakspear M, Friston KJ. Nonlinear dynamic causal models for fMRI. NeuroImage. 2008;42(2):649–662. DOI: 10.1016/j.neuroimage.2008.04.262
- 27Moran RJ, Stephan KE, Seidenbecher T, Pape HC, Dolan RJ, Friston KJ. Dynamic causal models of steady-state responses. NeuroImage. 2009;44(3):796–811. DOI: 10.1016/j.neuroimage.2008.09.048
- 28Tak S, Kempny AM, Friston KJ, Leff AP, Penny WD. Dynamic causal modelling for functional near-infrared spectroscopy. NeuroImage. 2015;111:338–349. DOI: 10.1016/j.neuroimage.2015.02.035
- 29Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ. Ten simple rules for dynamic causal modeling. NeuroImage. 2010;49(4):3099–3109. DOI: 10.1016/j.neuroimage.2009.11.015
- 30Daunizeau J, David O, Stephan KE. Dynamic causal modelling: A critical review of the biophysical and statistical foundations. NeuroImage. 2011;58(2):312–322. DOI: 10.1016/j.neuroimage.2009.11.062
- 31David O, Harrison L, Friston K.
Neuronal models of EEG and MEG . In: Statistical Parametric Mapping, Chapter 33. Elsevier; 2007. pp. 414–440. ISBN 9780123725608. DOI: 10.1016/B978-012372560-8/50033-4 - 32Mu J, Liu S, Burkitt AN, Grayden DB. Multi-frequency steady-state visual evoked potential dataset. Scientific Data. 2024;11(1):1–15. DOI: 10.1038/s41597-023-02841-5
- 33Yeldesbay A, Huguet G, Daun S. Reconstruction of phase-amplitude dynamics from signals of a network of oscillators. Chaos. 2025;35(4). DOI: 10.1063/5.0251072
