References
- 1Anderson, E. J., Mannan, S. K., Husain, M., Rees, G., Sumner, P., Mort, D. J., McRobbie, D., & Kennard, C. (2007). Involvement of prefrontal cortex in visual search. Experimental Brain Research, 180(2), 289–302. DOI: 10.1007/s00221-007-0860-0
- 2Arch, J. J., & Craske, M. G. (2006). Mechanisms of mindfulness: Emotion regulation following a focused breathing induction. Behaviour Research and Therapy, 44(12), 1849–1858. DOI: 10.1016/j.brat.2005.12.007
- 3Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. DOI: 10.1016/j.tics.2012.06.010
- 4Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485–496. DOI: 10.3758/BF03205306
- 5Bichot, N. P., Heard, M. T., DeGennaro, E. M., & Desimone, R. (2015). A source for feature-based attention in the prefrontal cortex. Neuron, 88(4), 832–844. DOI: 10.1016/j.neuron.2015.10.001
- 6Buschman, T, J., & Miller, E, K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860–1862. DOI: 10.1126/science.1138071
- 7Carrasco, M., Evert, D. L., Chang, I., & Katz, S. M. (1995). The eccentricity effect: Target eccentricity affects performance on conjunction searches. Perception & Psychophysics, 57(8), 1241–1261. DOI: 10.3758/BF03208380
- 8de Fockert, J. D., Rees, G., Frith, C., & Lavie, N. (2004). Neural correlates of attentional capture in visual search. Journal of Cognitive Neuroscience, 16(5), 751–759. DOI: 10.1162/089892904970762
- 9de Fockert, J. W., & Theeuwes, J. (2012). Role of frontal cortex in attentional capture by singleton distractors. Brain and Cognition, 80(3), 367–373. DOI: 10.1016/j.bandc.2012.07.006
- 10de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a web browser. Behavior Research Methods, 47(1), 1–12. DOI: 10.3758/s13428-014-0458-y
- 11Jefferson, Y. (2010). Mouth breathing: Adverse effects on facial growth, health, academics, and behavior. General Dentistry, 58(1), 18–25.
- 12Kuroishi, R. C. S., Garcia, R. B., Valera, F. C. P., Anselmo-Lima, W. T., & Fukuda, M. T. H. (2015). Deficits in working memory, reading comprehension and arithmetic skills in children with mouth breathing syndrome: Analytical cross-sectional study. Sao Paulo Medical Journal, 133, 78–83. DOI: 10.1590/1516-3180.2013.7630011
- 13Liesefeld, H. R., Moran, R., Usher, M., Müller, H. J., & Zehetleitner, M. (2016). Search efficiency as a function of target saliency: The transition from inefficient to efficient search and beyond. Journal of Experimental Psychology: Human Perception and Performance, 42(6), 821. DOI: 10.1037/xhp0000156
- 14Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22(6), 657–672. DOI: 10.3758/BF03209251
- 15Martin, M. S., Sforza, E., Roche, F., Barthelemy, J. C., & Thomas-Anterion, C. (2015). Sleep breathing disorders and cognitive function in the elderly: An 8-year follow-up study. the proof-synapse cohort. Sleep, 38, 179–187. DOI: 10.5665/sleep.4392
- 16Miller, E. K., & Buschman, T. J. (2013). Cortical circuits for the control of attention. Current Opinion in Neurobiology, 23(2), 216–222. DOI: 10.1016/j.conb.2012.11.011
- 17Nakamura, N. H., Fukunaga, M., & Oku, Y. (2018). Respiratory modulation of cognitive performance during the retrieval process. PLOS ONE, 13(9):
e0204021 . DOI: 10.1371/journal.pone.0204021 - 18Nothdurft, H. C. (2000). Salience from feature contrast: Variations with texture density. Vision Research, 40(23), 3181–3200. DOI: 10.1016/S0042-6989(00)00168-1
- 19Pevernagie, D. A., De Meyer, M. M., & Claeys, S. (2005). Sleep, breathing and the nose. Sleep Medicine Reviews, 9(6), 437–451. DOI: 10.1016/j.smrv.2005.02.002
- 20Sano, M., Sano, S., Oka, N., Yoshino, K., & Kato, T. (2013). Increased oxygen load in the prefrontal cortex from mouth breathing: A vector-based near-infrared spectroscopy study. NeuroReport, 24(17), 935–940. DOI: 10.1097/WNR.0000000000000008
- 21Shimamura, A. P. (2000). The role of the prefrontal cortex in dynamic filtering. Psychobiology, 28(2), 207–218.
- 22Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606. DOI: 10.3758/BF03211656
- 23Theeuwes, J. (2010). Top–down and bottom–up control of visual selection. Acta Psychologica, 135(2), 77–99. DOI: 10.1016/j.actpsy.2010.02.006
- 24Theeuwes, J. (2018). Visual selection: Usually fast and automatic; Seldom slow and volitional. Journal of Cognition, 1(1), 21. DOI: 10.5334/joc.32
- 25Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention, Cognitive Psychology, 12(1), 97–136. DOI: 10.1016/0010-0285(80)90005-5
- 26Vecera, S. P., Cosman, J. D., Vatterott, D. B., & Roper, Z. J. (2014).
The control of visual attention: Toward a unified account . In Psychology of Learning and Motivation, 60, 303–347. Academic Press. DOI: 10.1016/B978-0-12-800090-8.00008-1 - 27Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 0058. DOI: 10.1038/s41562-017-0058
- 28Young, T., Finn, L., & Kim, H. (1997). Nasal obstruction as a risk factor for sleep-disordered breathing. Journal of Allergy Clinical Immunology, 99(2), 757–762. DOI: 10.1016/S0091-6749(97)70124-6
- 29Zautra, A. J., Fasman, R., Davis, M. C., & Arthur, D. (2010). The effects of slow breathing on affective responses to pain stimuli: An experimental study. Pain, 149(1), 12–18. DOI: 10.1016/j.pain.2009.10.001
- 30Zelano, C., Jiang, H., Zhou, G., Arora, N., Schuele, S., Rosenow, J., & Gottfried, F. A. (2016). Nasal respiration entrains human limbic oscillations and modulates cognitive function. The Journal of Neuroscience, 36(49), 12448–12467. DOI: 10.1523/JNEUROSCI.2586-16.2016
