Have a personal or library account? Click to login
Predicting Lexical Norms: A Comparison between a Word Association Model and Text-Based Word Co-occurrence Models Cover

Predicting Lexical Norms: A Comparison between a Word Association Model and Text-Based Word Co-occurrence Models

Open Access
|Nov 2018

References

  1. 1Aitchison, J. (2003). Words in the Mind: An Introduction to the Mental Lexicon. Hoboken, NJ: John Wiley & Sons.
  2. 2Bestgen, Y., & Vincze, N. (2012). Checking and bootstrapping lexical norms by means of word similarity indexes. Behavior Research Methods, 44, 9981006. DOI: 10.3758/s13428-012-0195-z
  3. 3Binder, J. R., Westbury, C. F., McKiernan, K. A., Possing, E. T., & Medler, D. A. (2005). Distinct brain systems for processing concrete and abstract concepts. Journal of Cognitive Neuroscience, 17, 905917. DOI: 10.1162/0898929054021102
  4. 4Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling: Theory and applications. New York, NY: Springer.
  5. 5Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Stimuli, instruction manual and affective ratings (Tech. Rep. No. C-1). Gainesville, FL: Center for Research in Psychophysiology, University of Florida.
  6. 6Bradley, M. M., & Lang, P. J. (2017). Affective Norms for English Words (ANEW): Instruction manual and affective ratings. (Technical Report C-3). Gainesville, FL: UF Center for the Study of Emotion and Attention.
  7. 7Brants, T., & Franz, A. (2006). Web 1 T 5-gram Version 1. Philadelphia, PA: Linguistic Data Consortium.
  8. 8Brysbaert, M., & Ghyselinck, M. (2006). The effect of age of acquisition: Partly frequency related, partly frequency independent. Visual Cognition, 13, 9921011. DOI: 10.1080/13506280544000165
  9. 9Brysbaert, M., Stevens, M., De Deyne, S., Voorspoels, W., & Storms, G. (2014). Norms of age of acquisition and concreteness for 30,000 Dutch words. Acta Psychologica, 150, 8084. DOI: 10.1016/j.actpsy.2014.04.010
  10. 10Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46, 904911. DOI: 10.3758/s13428-013-0403-5
  11. 11Bullinaria, J. A., & Levy, J. P. (2007). Extracting semantic representations from word co-occurrence statistics: A computational study. Behavior Research Methods, 39, 510526. DOI: 10.3758/BF03193020
  12. 12Bullinaria, J. A., & Levy, J. P. (2012). Extracting semantic representations from word co-occurrence statistics: Stop-lists, stemming, and SVD. Behavior Research Methods, 44, 890907. DOI: 10.3758/s13428-011-0183-8
  13. 13Coltheart, M. (1981). The MRC psycholinguistic database. The Quarterly Journal of Experimental Psychology, 33, 497505. DOI: 10.1080/14640748108400805
  14. 14Cramer, P. (1968). Word association. New York, NY: Academic Press.
  15. 15De Deyne, S., Navarro, D. J., Collell, G., & Perfors, A. (2018). Visual and affective grounding in language and mind. Manuscript under review.
  16. 16De Deyne, S., Navarro, D. J., Perfors, A., & Storms, G. (2016). Structure at every scale: A semantic network account of the similarities between unrelated concepts. Journal of Experimental Psychology. General, 145, 12281254. DOI: 10.1037/xge0000192
  17. 17De Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., & Storms, G. (2018). The “Small World of Words” English word association norms for over 12,000 cue words. Behavior Research Methods. DOI: 10.3758/s13428-018-1115-7
  18. 18De Deyne, S., Navarro, D. J., & Storms, G. (2013). Better explanations of lexical and semantic cognition using networks derived from continued rather than single-word associations. Behavior Research Methods, 45, 480498. DOI: 10.3758/s13428-012-0260-7
  19. 19De Deyne, S., Perfors, A., & Navarro, D. J. (2017). Predicting human similarity judgments with distributional models: The value of word associations. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, 48064810. DOI: 10.24963/ijcai.2017/671
  20. 20De Deyne, S., Verheyen, S., & Storms, G. (2015). The role of corpus size and syntax in deriving lexico-semantic representations for a wide range of concepts. Quarterly Journal of Experimental Psychology, 68, 16431664. DOI: 10.1080/17470218.2014.994098
  21. 21De Deyne, S., Voorspoels, W., Verheyen, S., Navarro, D. J., & Storms, G. (2014). Accounting for graded structure in adjective categories with valence-based opposition relationships. Language, Cognition and Neuroscience, 29, 568583. DOI: 10.1080/01690965.2013.794294
  22. 22Deese, J. (1965). The Structure of Associations in Language and Thought. Baltimore, MD: Johns Hopkins University Press.
  23. 23de Groot, A. M. B. (1995). Determinants of bilingual lexicosemantic organization. Computer Assisted Language Learning, 8, 151180. DOI: 10.1080/0958822940080204
  24. 24De Houwer, J., Crombez, G., Baeyens, F., & Hermans, D. (2001). On the generality of the affective Simon effect. Cognition and Emotion, 15, 189206. DOI: 10.1080/02699930125883
  25. 25Diedenhofen, B., & Musch, J. (2015). cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLoS ONE, 10, e0121945. DOI: 10.1371/journal.pone.0121945
  26. 26Fazio, R. H. (2001). On the automatic activation of associated evaluations: An overview. Cognition and Emotion, 15, 115141. DOI: 10.1080/02699930125908
  27. 27Firth, J. R. (1968). Selected Papers of J. R. Firth, 1952–59. Indiana University Press.
  28. 28Fisher, A. V. (2010). What’s in the name? Or how rocks and stones are different from bunnies and rabbits. Journal of Experimental Child Psychology, 105, 198212. DOI: 10.1016/j.jecp.2009.11.001
  29. 29Fisher, R. A. (1925). Statistical Methods for Research Workers. Edinburgh, Scotland: Oliver and Boyd.
  30. 30Hampton, J. A. (1979). Polymorphous concepts in semantic memory. Journal of Verbal Learning and Verbal Behavior, 18, 441461. DOI: 10.1016/S0022-5371(79)90246-9
  31. 31Heylen, K., Peirsman, Y., & Geeraerts, D. (2008). Automatic synonymy extraction. In: Verberne, S., van Halteren, H., & Coppen, P.-A. (eds.), A comparison of syntactic context models: LOT computational linguistics in the Netherlands 2007, 101116. Utrecht: Netherlands National Graduate School of Linguistics.
  32. 32Hofmann, M. J., Kuchinke, L., Biemann, C., Tamm, S., & Jacobs, A. M. (2011). Remembering words in context as predicted by an associative read-out model. Frontiers in Psychology, 2, 252. DOI: 10.3389/fpsyg.2011.00252
  33. 33Hollis, G., & Westbury, C. (2016). The principals of meaning: Extracting semantic dimensions from co-occurrence models of semantics. Psychonomic Bulletin & Review, 23, 17441756. DOI: 10.3758/s13423-016-1053-2
  34. 34Isen, A. M., Johnson, M. M., Mertz, E., & Robinson, G. F. (1985). The influence of positive affect on the unusualness of word associations. Journal of Personality and Social Psychology, 48, 14131426. DOI: 10.1037/0022-3514.48.6.1413
  35. 35Jones, M. N., Hills, T. T., & Todd, P. M. (2015). Hidden processes in structural representations: A reply to Abbott, Austerweil, and Griffiths (2015). Psychological Review, 122, 570574. DOI: 10.1037/a0039248
  36. 36Klauer, K. C. (1997). Affective priming. European Review of Social Psychology, 8, 67103. DOI: 10.1080/14792779643000083
  37. 37Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology. General, 140, 1434. DOI: 10.1037/a0021446
  38. 38Kruskal, J. B., & Wish, M. (1978). Multidimensional Scaling. Beverly Hills, CA: Sage. DOI: 10.4135/9781412985130
  39. 39Kuperman, V., Estes, Z., Brysbaert, M., & Warriner, A. B. (2014). Emotion and language: Valence and arousal affect word recognition. Journal of Experimental Psychology. General, 143, 10651081. DOI: 10.1037/a0035669
  40. 40Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior Research Methods, 44, 978990. DOI: 10.3758/s13428-012-0210-4
  41. 41Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211240. DOI: 10.1037/0033-295X.104.2.211
  42. 42Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25, 259284. DOI: 10.1080/01638539809545028
  43. 43Lane, R. D., Chua, P. M., & Dolan, R. J. (1999). Common effects of emotional valence, arousal and attention on neural activation during visual processing of pictures. Neuropsychologia, 37, 989997. DOI: 10.1016/S0028-3932(99)00017-2
  44. 44Lang, P. J., Bradley, M. M., Fitzsimmons, J. R., Cuthbert, B. N., Scott, J. D., Moulder, B., & Nangia, V. (1998). Emotional arousal and activation of the visual cortex: An fMRI analysis. Psychophysiology, 35, 199210. DOI: 10.1111/1469-8986.3520199
  45. 45Levy, O., & Goldberg, Y. (2014). Neural Word Embedding As Implicit Matrix Factorization. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, 2, 21772185. Cambridge, MA: MIT Press.
  46. 46Maddock, R. J., Garrett, A. S., & Buonocore, M. H. (2003). Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Human Brain Mapping, 18, 3041. DOI: 10.1002/hbm.10075
  47. 47Mandera, P., Keuleers, E., & Brysbaert, M. (2015). How useful are corpus-based methods for extrapolating psycholinguistic variables? Quarterly Journal of Experimental Psychology, 68, 16231642. DOI: 10.1080/17470218.2014.988735
  48. 48Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects. Annual Review of Psychology, 32, 89115. DOI: 10.1146/annurev.ps.32.020181.000513
  49. 49Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. https://arxiv.org/abs/1301.3781/.
  50. 50Moffat, M., Siakaluk, P. D., Sidhu, D. M., & Pexman, P. M. (2015). Situated conceptualization and semantic processing: Effects of emotional experience and context availability in semantic categorization and naming tasks. Psychonomic Bulletin & Review, 22, 408419. DOI: 10.3758/s13423-014-0696-0
  51. 51Moors, A., De Houwer, J., Hermans, D., Wanmaker, S., van Schie, K., Van Harmelen, A.-L., De Schryver, M., De Winne, J., & Brysbaert, M. (2013). Norms of valence, arousal, dominance, and age of acquisition for 4,300 Dutch words. Behavior Research Methods, 45, 169177. DOI: 10.3758/s13428-012-0243-8
  52. 52Mourão-Miranda, J., Volchan, E., Moll, J., de Oliveira-Souza, R., Oliveira, L., Bramati, I., Pessoa, L., et al. (2003). Contributions of stimulus valence and arousal to visual activation during emotional perception. NeuroImage, 20, 19551963. DOI: 10.1016/j.neuroimage.2003.08.011
  53. 53Murphy, G. (2002). The Big Book of Concepts. Cambridge, MA: MIT Press.
  54. 54Murphy, G. L., & Lassaline, M. E. (1997). Hierarchical structure in concepts and the basic level of categorization. In: Lamberts, K., & Shanks, D. R. (eds.), Knowledge, concepts and categories, 93131. Cambridge, MA: MIT Press.
  55. 55Nematzadeh, A., Meylan, S., & Griffiths, T. (2017). Evaluating vector-space models of word representation, or, the unreasonable effectiveness of counting words near other words. In: Gunzelmann, G., Howes, A., Tenbrink, T., & Davelaar, E. (eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society, 859864. Austin, TX: Cognitive Science Society.
  56. 56Niedenthal, P. M., Halberstadt, J. B., & Innes-Ker, Å. H. (1999). Emotional response categorization. Psychological Review, 106, 337361. DOI: 10.1037/0033-295X.106.2.337
  57. 57Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The Measurement of Meaning. Urbana, IL: University of Illinois Press.
  58. 58Osherson, D. N., Smith, E. E., Wilkie, O., López, A., & Shafir, E. (1990). Category-based induction. Psychological Review, 97, 185200. DOI: 10.1037/0033-295X.97.2.185
  59. 59Padó, S., & Lapata, M. (2007). Dependency-based construction of semantic space models. Comput. Linguist., 33, 161199. DOI: 10.1162/coli.2007.33.2.161
  60. 60Paivio, A., Walsh, M., & Bons, T. (1994). Concreteness effects on memory: When and why? Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 11961204. DOI: 10.1037/0278-7393.20.5.1196
  61. 61Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review, 103, 56115. DOI: 10.1037/0033-295X.103.1.56
  62. 62Recchia, G., & Louwerse, M. M. (2015). Reproducing affective norms with lexical co-occurrence statistics: Predicting valence, arousal, and dominance. The Quarterly Journal of Experimental Psychology, 68, 15841598. DOI: 10.1080/17470218.2014.941296
  63. 63Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7, 573605. DOI: 10.1016/0010-0285(75)90024-9
  64. 64Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382439. DOI: 10.1016/0010-0285(76)90013-X
  65. 65Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. (1988). Context availability and lexical decisions for abstract and concrete words. Journal of Memory and Language, 27, 499520. DOI: 10.1016/0749-596X(88)90022-8
  66. 66Smith, E. E., Shafir, E., & Osherson, D. (1993). Similarity, plausibility, and judgments of probability. Cognition, 49, 6796. DOI: 10.1016/0010-0277(93)90036-U
  67. 67Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15, 72101. DOI: 10.2307/1412159
  68. 68Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. Cognitive Science, 29, 4178. DOI: 10.1207/s15516709cog2901_3
  69. 69Szalay, L. B., & Deese, J. (1978). Subjective meaning and culture: An assessment through word associations. Hillsdale, NJ: Lawrence Erlbaum.
  70. 70Van Rensbergen, B., Storms, G., & De Deyne, S. (2015). Examining assortativity in the mental lexicon: Evidence from word associations. Psychonomic Bulletin & Review, 22, 17171724. DOI: 10.3758/s13423-015-0832-5
  71. 71Vankrunkelsven, H., Verheyen, S., De Deyne, S., & Storms, G. (2015). Predicting lexical norms using a word association corpus. In: Noelle, D., Dale, R., Warlaumont, A., Yoshimi, J., Matlock, T., Jennings, C., & Maglio, P. (eds.), Proceedings of the 37th Annual Conference of the Cognitive Science Society, 24632468. Austin, TX: Cognitive Science Society.
  72. 72Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 45(4), 11911207. DOI: 10.3758/s13428-012-0314-x
  73. 73Wittgenstein, L. (1953). Philosophical Investigations. New York, NY: Macmillan.
  74. 74Zevin, J. D., & Seidenberg, M. S. (2002). Age of acquisition effects in word reading and other tasks. Journal of Memory and Language, 47, 129. DOI: 10.1006/jmla.2001.2834
DOI: https://doi.org/10.5334/joc.50 | Journal eISSN: 2514-4820
Language: English
Submitted on: Jul 1, 2018
Accepted on: Nov 6, 2018
Published on: Nov 27, 2018
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Hendrik Vankrunkelsven, Steven Verheyen, Gert Storms, Simon De Deyne, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.