Have a personal or library account? Click to login
Predicting Lexical Norms: A Comparison between a Word Association Model and Text-Based Word Co-occurrence Models Cover

Predicting Lexical Norms: A Comparison between a Word Association Model and Text-Based Word Co-occurrence Models

Open Access
|Nov 2018

Abstract

In two studies we compare a distributional semantic model derived from word co-occurrences and a word association based model in their ability to predict properties that affect lexical processing. We focus on age of acquisition, concreteness, and three affective variables, namely valence, arousal, and dominance, since all these variables have been shown to be fundamental in word meaning. In both studies we use a model based on data obtained in a continued free word association task to predict these variables. In Study 1 we directly compare this model to a word co-occurrence model based on syntactic dependency relations to see which model is better at predicting the variables under scrutiny in Dutch. In Study 2 we replicate our findings in English and compare our results to those reported in the literature. In both studies we find the word association-based model fit to predict diverse word properties. Especially in the case of predicting affective word properties, we show that the association model is superior to the distributional model.

DOI: https://doi.org/10.5334/joc.50 | Journal eISSN: 2514-4820
Language: English
Submitted on: Jul 1, 2018
Accepted on: Nov 6, 2018
Published on: Nov 27, 2018
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Hendrik Vankrunkelsven, Steven Verheyen, Gert Storms, Simon De Deyne, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.