References
- 1Austin, P. C., White, I. R., Lee, D. S., & van Buuren, S. (2021). Missing data in clinical research: a tutorial on multiple imputation. Canadian Journal of Cardiology, 37(9), 1322–1331. 10.1016/j.cjca.2020.11.010
- 2Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412. 10.1016/j.jml.2007.12.005
- 3Baguley, T. (2009). Standardized or simple effect size: What should be reported? British Journal of Psychology, 100(3), 603–617. 10.1348/000712608X377117
- 4Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37, 379–384. 10.3758/BF03192707
- 5Bartos, F., Maier, M., Wagenmakers, E. J., Nippold, F., Doucouliagos, H., Ioannidis, J. P. A., Otte, W. M., Sladekova, M., Deressa, T. K., Bruns, S. B., Fanelli, D., & Stanley, T. D. (2024). Footprint of publication selection bias on meta-analyses in medicine, environmental sciences, psychology, and economics. Research Synthesis Methods. 10.1002/jrsm.1703
- 6Bates, D., et al. (2022). Lme4: Linear mixed-effects models using ‘eigen’ and S4. Version 1.1-31.
https://cran.r-project.org/web/packages/lme4/index.html - 7Ben-Shachar, M. S., Makowski, D., Lüdecke, D., Patil, I., Wiernik, B. M., Thériault, R., Kelley, K., Stanley, D., Caldwell, A., Burnett, J., & Karreth, J. (2023).
effectsize: Indices of Effect Size, Version 0.8.3 . Available athttps://cran.r-project.org/web/packages/effectsize/index.html - 8Blake, K. R., & Gangestad, S. (2020). On attenuated interactions, measurement error, and statistical power: Guidelines for social and personality psychologists. Personality and Social Psychology Bulletin, 46(12), 1702–1711. 10.1177/0146167220913363
- 9Bosco, F. A., Aguinis, H., Singh, K., Field, J. G., & Pierce, C. A. (2015). Correlational effect size benchmarks. Journal of Applied Psychology, 100(2), 431–449. 10.1037/a0038047
- 10Brauer, M., & Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. 10.1037/met0000159
- 11Brehm, L., & Alday, P. M. (2022). Contrast coding choices in a decade of mixed models. Journal of Memory and Language, 125,
104334 . 10.1016/j.jml.2022.104334 - 12Brown, V. A. (2020, April 11). An introduction to linear mixed effects modeling in R. 10.31234/osf.io/9vghm
- 13Brysbaert, M. (2019). How Many Participants Do We Have to Include in Properly Powered Experiments? A Tutorial of Power Analysis with Reference Tables. Journal of Cognition, 2(1),
16 . 10.5334/joc.72 - 14Brysbaert, M. (2020). Basic statistics for psychologists (2nd edition). Macmilan International.
- 15Brysbaert, M. (2021). Power considerations in bilingualism research: Time to step up our game. Bilingualism: Language and Cognition, 24(5), 813–818. 10.1017/S1366728920000437
- 16Brysbaert, M., & Stevens, M. (2018). Power Analysis and Effect Size in Mixed Effects Models: A Tutorial. Journal of Cognition, 1(9), 1–20. 10.5334/joc.10
- 17Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12(4), 335–359. 10.1016/S0022-5371(73)80014-3
- 18Fernández-Castilla, B., Said-Metwaly, S., Kreitchmann, R. S., & Van Den Noortgate, W. (2024). What do meta-analysts need in primary studies? Guidelines and the SEMI checklist for facilitating cumulative knowledge. Behavior Research Methods, 56, 3315–3329. 10.3758/s13428-024-02373-9
- 19Gallucci, M. (2022).
gamlj/gamlj: GAMLj Suite for linear models Version 2.6.6 .https://rdrr.io/github/gamlj/gamlj/ - 20Garcia-Marques, L., Garcia-Marques, T., & Brauer, M. (2014). Buy three but get only two: The smallest effect in a 2 × 2 ANOVA is always uninterpretable. Psychonomic Bulletin & Review, 21(6), 1415–1430. 10.3758/s13423-014-0640-3
- 21Götz, F. M., Gosling, S. D., & Rentfrow, P. J. (2022). Small effects: The indispensable foundation for a cumulative psychological science. Perspectives on Psychological Science, 17(1), 205–215. 10.1177/1745691620984483
- 22Hyatt, C. S., Crowe, M. L., West, S. J., Vize, C. E., Carter, N. T., Chester, D. S., & Miller, J. D. (2022). An empirically based power primer for laboratory aggression research. Aggressive behavior, 48(3), 279–289. 10.1002/ab.21996
- 23Jaeger, B. (2022).
Package ‘r2glmm’ Version 0.1.2 . Available athttps://cran.r-project.org/web/packages/r2glmm/r2glmm.pdf - 24Johnson, P. C. (2014). Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods in Ecology and Evolution, 5(9), 944–946. 10.1111/2041-210X.12225
- 25Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social psychology: A new and comprehensive solution to a pervasive but largely ignored problem. Journal of Personality and Social Psychology, 103(1), 54–69. 10.1037/a0028347
- 26Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B., & Jensen, S. P. (2022).
Package ‘lmerTest’ Version 3.1–3 .https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf - 28Lewis, M. (2023). Fixing the stimulus-as-a-fixed-effect-fallacy in forensically valid face-composite research. Journal of Applied Research in Memory and Cognition. 10.1037/mac0000128
- 27Lovakov, A., & Agadullina, E. R. (2021). Empirically derived guidelines for effect size interpretation in social psychology. European Journal of Social Psychology, 51(3), 485–504. 10.1002/ejsp.2752
- 29Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error and power in linear mixed models. Journal of Memory and Language, 94, 305–315. 10.1016/j.jml.2017.01.001
- 30Meteyard, L., & Davies, R. A. (2020). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language, 112,
104092 . 10.1016/j.jml.2020.104092 - 31Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in ecology and evolution, 4(2), 133–142. 10.1111/j.2041-210x.2012.00261.x
- 32Norouzian, R., & Plonsky, L. (2018). Eta-and partial eta-squared in L2 research: A cautionary review and guide to more appropriate usage. Second Language Research, 34(2), 257–271. 10.1177/0267658316684904
- 33Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect size for some common research designs. Psychological Methods, 8, 434–447. 10.1037/1082-989X.8.4.434
- 34Park, J., Cardwell, R., & Yu, H. T. (2020). Specifying the random effect structure in linear mixed effect models for analyzing psycholinguistic data. Methodology, 16(2), 92–111. 10.5964/meth.2809
- 35Pek, J., & Flora, D. B. (2018). Reporting effect sizes in original psychological research: A discussion and tutorial. Psychological Methods, 23(2), 208–225. 10.1037/met0000126
- 36Pollatsek, A., & Well, A. D. (1995). On the use of counterbalanced designs in cognitive research: A suggestion for a better and more powerful analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(3), 785–794. 10.1037/0278-7393.21.3.785
- 37Richardson, J. T. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review, 6(2), 135–147. 10.1016/j.edurev.2010.12.001
- 38Rights, J. D., & Sterba, S. K. (2019). Quantifying explained variance in multilevel models: An integrative framework for defining R-squared measures. Psychological Methods, 24(3), 309–338. 10.1037/met0000184
- 39Schäfer, T., & Schwarz, M. A. (2019). The meaningfulness of effect sizes in psychological research: Differences between sub-disciplines and the impact of potential biases. Frontiers in Psychology, 10,
813 . 10.3389/fpsyg.2019.00813 - 40Schütze, A. (1964). Studies in Social Theory. Collected Papers, Volume II. Martinus Nijhoff. 10.1007/978-94-017-6854-2
- 41Sladekova, M., Webb, L. E. A., & Field, A. P. (2023). Estimating the change in meta-analytic effect size estimates after the application of publication bias adjustment methods. Psychological Methods, 28(3), 664–686. 10.1037/met0000470
- 42Sommet, N., Weissman, D. L., Cheutin, N., & Elliot, A. (2023). How many participants do I need to test an interaction? Conducting an appropriate power analysis and achieving sufficient power to detect an interaction. Advances in Methods and Practices in Psychological Science. 10.1177/25152459231178728
- 43The jamovi project. (2023).
jamovi. (Version 2.3) [Computer Software] . Retrieved fromhttps://www.jamovi.org - 44Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37(3), 498–505. 10.3758/BF03192720
- 45Vanhove, J. (2015, February 5). Why I don’t like standardised effect sizes.
https://janhove.github.io/reporting/2015/02/05/standardised-vs-unstandardised-es - 46Wagenmakers, E. J., Krypotos, A. M., Criss, A. H., & Iverson, G. (2012). On the interpretation of removable interactions: A survey of the field 33 years after Loftus. Memory & Cognition, 40, 145–160. 10.3758/s13421-011-0158-0
- 47Westfall, J., Kenny, D. A., & Judd, C. M. (2014). Statistical power and optimal design in experiments in which samples of participants respond to samples of stimuli. Journal of Experimental Psychology: General, 143(5), 2020–2045. 10.1037/xge0000014
- 48Yarkoni, T. (2022). The generalizability crisis. Behavioral and Brain Sciences, 45,
e1 . 10.1017/S0140525X20001685
