Have a personal or library account? Click to login
Number and Continuous Magnitude Processing Depends on Task Goals and Numerosity Ratio Cover

Number and Continuous Magnitude Processing Depends on Task Goals and Numerosity Ratio

Open Access
|Mar 2018

References

  1. 1Banks, W. P. (1977). Encoding and processing of symbolic information in comparative judgments. Psychology of Learning and Motivation, 11, 101159. DOI: 10.1016/S0079-7421(08)60476-4
  2. 2Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number domain. Trends in Cognitive Sciences, 13(2), 8391. DOI: 10.1016/j.tics.2008.11.007
  3. 3Cantrell, L., Boyer, T. W., Cordes, S., & Smith, L. B. (2015). Signal clarity: an account of the variability in infant quantity discrimination tasks. Developmental Science, 18(6), 877893. DOI: 10.1111/desc.12283
  4. 4Cantrell, L., Kuwabara, M., & Smith, L. B. (2015). Set size and culture influence children’s attention to number. Journal of Experimental Child Psychology, 131, 1937. DOI: 10.1016/j.jecp.2014.10.010
  5. 5Cantrell, L., & Smith, L. B. (2013). Open questions and a proposal: a critical review of the evidence on infant numerical abilities. Cognition, 128(3), 33152. DOI: 10.1016/j.cognition.2013.04.008
  6. 6Clayton, S., Gilmore, C., & Inglis, M. (2015). Dot comparison stimuli are not all alike: the effect of different visual controls on ANS measurement. Acta Psychologica, 161, 177184. DOI: 10.1016/j.actpsy.2015.09.007
  7. 7Dakin, S. C., Tibber, M. S., Greenwood, J. A., & Morgan, M. J. (2011). A common visual metric for approximate number and density. Proceedings of the National Academy of Sciences, 108(49), 1955219557. DOI: 10.1073/pnas.1113195108
  8. 8Dehaene, S., & Changeux, J. P. (1993). Development of elementary numerical abilities: a neuronal model. Journal of Cognitive Neuroscience, 5(4), 390407. DOI: 10.1162/jocn.1993.5.4.390
  9. 9Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307314. DOI: 10.1016/j.tics.2004.05.002
  10. 10Gebuis, T., Cohen Kadosh, R., & Gevers, W. (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychologica, 171, 171. DOI: 10.1016/j.actpsy.2016.09.003
  11. 11Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43(4), 981986. DOI: 10.3758/s13428-011-0097-5
  12. 12Gebuis, T., & Reynvoet, B. (2012a). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology. General, 141(4), 642648. DOI: 10.1037/a0026218
  13. 13Gebuis, T., & Reynvoet, B. (2012b). Continuous visual properties explain neural responses to nonsymbolic number. Psychophysiology, 49(11), 16491659. DOI: 10.1111/j.1469-8986.2012.01461.x
  14. 14Gebuis, T., & Reynvoet, B. (2013). The neural mechanisms underlying passive and active processing of numerosity. NeuroImage, 70, 301307. DOI: 10.1016/j.neuroimage.2012.12.048
  15. 15Gevers, W., Cohen Kadosh, R., & Gebuis, T. (2016). The sensory integration theory: an alternative to the Approximate Number System. In: Henik, A. (Ed.), Continuous issues in numerical cognition, 405418. (1st ed.,). Elsevier. DOI: 10.1016/B978-0-12-801637-4.00018-4
  16. 16Halberda, J., Mazzocco, M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665668. DOI: 10.1038/nature07246
  17. 17Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103(51), 19599604. DOI: 10.1073/pnas.0609485103
  18. 18Inglis, M., & Gilmore, C. (2013). Sampling from the mental number line: How are approximate number system representations formed? Cognition, 129(1), 63639. DOI: 10.1016/j.cognition.2013.06.003
  19. 19Leibovich, T., Al-Rubaiey Kadhim, S., & Ansari, D. (2017). Beyond comparison: physical size affects non-symbolic but not symbolic number line estimation. Acta Psychologica. In press.
  20. 20Leibovich, T., & Ansari, D. (2016). The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding questions. Canadian Journal of Experimental Psychology, 70(1), 1223. DOI: 10.1037/cep0000070
  21. 21Leibovich, T., & Henik, A. (2013). Magnitude processing in non-symbolic stimuli. Frontiers in Psychology, 4, 375. DOI: 10.3389/fpsyg.2013.00375
  22. 22Leibovich, T., & Henik, A. (2014). Comparing performance in discrete and continuous comparison tasks. Quarterly Journal of Experimental Psychology, 67(5), 899917. DOI: 10.1080/17470218.2013.837940
  23. 23Leibovich, T., Henik, A., & Salti, M. (2015). Numerosity processing is context driven even in the subitizing range: an fMRI study. Neuropsychologia, 77, 137147. DOI: 10.1016/j.neuropsychologia.2015.08.016
  24. 24Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164. DOI: 10.1017/S0140525X16000960
  25. 25Leibovich, T., Vogel, S. E., Henik, A., & Ansari, D. (2015). Asymmetric processing of numerical and non-numerical magnitudes in the brain: an fMRI study. Journal of Cognitive Neuroscience, 28(1), 166176. DOI: 10.1162/jocn_a_00887
  26. 26Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: an open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 31424. DOI: 10.3758/s13428-011-0168-7
  27. 27Meyers, L. S., Gamst, G., & Guarino, A. J. (2006). Applied multivariate research: Design and interpretation. SAGE. Retrieved from: http://www.google.co.il/books?hl=en&lr=&id=7e4npyN3BasC&pgis=1.
  28. 28Mix, K. S., Huttenlocher, J., & Levine, S. C. (2002). Multiple cues for quantification in infancy: Is number one of them? Psychological Bulletin, 128(2), 278294. DOI: 10.1037/0033-2909.128.2.278
  29. 29Park, J., DeWind, N. K., Woldorff, M. G., & Brannon, E. M. (2015). Rapid and direct encoding of numerosity in the visual stream. Cerebral Cortex, 26(2), 748763. DOI: 10.1093/cercor/bhv017
  30. 30Salti, M., Katzin, N., Katzin, D., Leibovich, T., & Henik, A. (2017). One tamed at a time: A new approach for controlling continuous magnitudes in numerical comparison tasks. Behavior Research Methods, 49(3), 11201127. DOI: 10.3758/s13428-016-0772-7
  31. 31Smets, K., Gebuis, T., & Reynvoet, B. (2013). Comparing the neural distance effect derived from the non-symbolic comparison and the same-different task. Frontiers in Human Neuroscience, 7(February), 28. DOI: 10.3389/fnhum.2013.00028
  32. 32Soltész, F., & Szűcs, D. (2014). Neural adaptation to non-symbolic number and visual shape: an electrophysiological study. Biological Psychology, 103, 203211. DOI: 10.1016/j.biopsycho.2014.09.006
  33. 33Tibber, M. S., Greenwood, J. A., & Dakin, S. C. (2012). Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention. Journal of Vision, 12(6), 8. DOI: 10.1167/12.6.8
DOI: https://doi.org/10.5334/joc.22 | Journal eISSN: 2514-4820
Language: English
Submitted on: Jun 25, 2017
Accepted on: Feb 27, 2018
Published on: Mar 23, 2018
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Tali Leibovich-Raveh, Itamar Stein, Avishai Henik, Moti Salti, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.