References
- 1Andrews, S. (1992). Frequency and neighborhood effects on lexical access: Lexical similarity or orthographic redundancy? Journal of Experimental Psychology: Learning, Memory and Cognition, 18(2), 234–254. DOI: 10.1037/0278-7393.18.2.234
- 2Arciuli, J. (2017). The multi-component nature of statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 372,
20160058 . DOI: 10.1098/rstb.2016.0058 - 3Arciuli, J. (2018). Reading as statistical learning. Language, Speech, and Hearing Services in Schools, 49(3S), 634–643. DOI: 10.1044/2018_LSHSS-STLT1-17-0135
- 4Arciuli, J., & Simpson, I. C. (2012). Statistical learning is related to reading ability in children and adults. Cognitive Science, 36(2), 286–304. DOI: 10.1111/j.1551-6709.2011.01200.x
- 5Aslin, R. N. (2017). Statistical learning: A powerful mechanism that operates by mere exposure. Wiley Interdisciplinary Reviews: Cognitive Science, 8(1–2),
e1373 . DOI: 10.1002/wcs.1373 - 6Aslin, R. N., & Newport, E. L. (2012). Statistical learning: from acquiring specific items to forming general rules. Current Directions in Psychological Science, 21(3), 170–176. DOI: 10.1177/0963721412436806
- 7Baayen, R. H., Milin, P., Durdevic, D. F., Hendrix, P., & Marelli, M. (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. Psychological Review, 118(3), 438–481. DOI: 10.1037/a0023851
- 8Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1–48. DOI: 10.18637/jss.v067.i01
- 9Biederman, G. B. (1966). Supplementary report: the recognition of tachistoscopically presented five-letter words as a function of digram frequency. Journal of Verbal Learning and Verbal Behaviour, 5(2), 208–209. DOI: 10.1016/S0022-5371(66)80020-8
- 10Brady, T. F., & Oliva, A. (2008). Statistical learning using real-world scenes: Extracting categorical regularities without conscious intent. Psychological Science, 19(7), 678–685. DOI: 10.1111/j.1467-9280.2008.02142.x
- 11Bulf, H., Johnson, S. P., & Valenza, E. (2011). Visual statistical learning in the newborn infant. Cognition, 121, 127–132. DOI: 10.1016/j.cognition.2011.06.010
- 12Cassar, M., & Treiman, R. (1997). The beginnings of orthographic knowledge: Children’s knowledge of double letters in words. Journal of Educational Psychology, 89(4), 631–644. DOI: 10.1037/0022-0663.89.4.631
- 13Chetail, F. (2015). Reconsidering the role of orthographic redundancy in visual word recognition. Frontiers in Psychological Science, 6, 645. DOI: 10.3389/fpsyg.2015.00645
- 14Chetail, F. (2017). What do we do with what we learn? Statistical learning of orthographic regularities impacts written word processing. Cognition, 163, 103–120. DOI: 10.1016/j.cognition.2017.02.015
- 15Christiansen, M., & Chater, N. (2016). The Now-or-Never bottleneck: A fundamental constraint on language. Behavioral and Brain Sciences, 39, E62. DOI: 10.1017/S0140525X1500031X
- 16Christiansen, M. H. (2019). Implicit Statistical Learning: A Tale of Two Literatures. Topics in Cognitive Science, 11, 468–481. DOI: 10.1111/tops.12332
- 17Crepaldi, D., Amenta, S., Pawel, M., Keuleers, E., & Brysbaert, M. (2015, September). SUBTLEX-IT. Subtitle-based word frequency estimates for Italian. In Proceedings of the Annual Meeting of the Italian Association for Experimental Psychology (pp. 10–12).
- 18Crepaldi, D., Rastle, K., & Davis, C. J. (2010). Morphemes in their place: Evidence for position specific identification of suffixes. Memory and Cognition, 38(3), 312–321. DOI: 10.3758/MC.38.3.312
- 19Crepaldi, D., Rastle, K., Davis, C. J., & Lupker, S. (2013). Seeing stems everywhere: Position-independent identification of stem morphemes. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 510–525. DOI: 10.1037/a0029713
- 20Dale, R., & Christiansen, M. H. (2004). Active and passive statistical learning: Exploring the role of feedback in artificial grammar learning and language. In K. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the 26th Annual Conference of the Cognitive Science Society (pp. 262–267). Mahwah, NJ:
Erlbaum . - 21Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal. Trends in Cognitive Sciences, 9, 335–341. DOI: 10.1016/j.tics.2005.05.004
- 22Dell, G. S., & Chang, F. (2014). The P-chain: Relating sentence production and its disorders to comprehension and acquisition. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1634),
20120394 . DOI: 10.1098/rstb.2012.0394 - 23Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher order spatial structures from visual scenes. Psychological Science, 12(6), 499–504. DOI: 10.1111/1467-9280.00392
- 24Fiser, J., & Aslin, R. N. (2002). Statistical learning of higher order temporal structure from visual shape sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 458–467. DOI: 10.1037//0278-7393.28.3.458
- 25Fiser, J., & Aslin, R. N. (2005). Encoding multielement scenes: statistical learning of visual feature hierarchies. Journal of Experimental Psychology: General, 134(4), 521–537. DOI: 10.1037/0096-3445.134.4.521
- 26Frost, R. (2012). Towards a universal model of reading. Behavioral and Brain Sciences, 35(5), 263–279. DOI: 10.1017/S0140525X11001841
- 27Frost, R., Armstrong, B. C., & Christiansen, M. H. (2020). Statistical Learning Research: A Critical Review and Possible New Directions. Psychological Bulletin, 145(12), 1128–1153. DOI: 10.1037/bul0000210
- 28Frost, R., Kugler, T., Deutsch, A. & Forster, K. I. (2005). Orthographic structure versus morphological structure: Principles of lexical organization in a given language. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(6), 1293–1326. DOI: 10.1037/0278-7393.31.6.1293
- 29Frost, R., Siegelman, N., Narkiss, A., & Afek, L. (2013). What predicts successful literacy acquisition in a second language? Psychological Science, 24(7), 1243–1252. DOI: 10.1177/0956797612472207
- 30Gagl, B., Sassenhagen, J., Haan, S., Gregorova, K., Richlan, F., & Fiebach, C. J. (2020). An orthographic prediction error as the basis for efficient visual word recognition. NeuroImage,
116727 . DOI: 10.1016/j.neuroimage.2020.116727 - 31Gernsbacher, M. A. (1984). Resolving 20 years of inconsistent interactions between lexical familiarity and orthography, concreteness, and polysemy. Journal of Experimental Psychology: General, 113(2), 256–281. DOI: 10.1037/0096-3445.113.2.256
- 32Grainger, J., Dufau, S., Montant, M., Ziegler, J. C., & Fagot, J. (2012). Orthographic processing in Baboons (Papio papio). Science, 336, 245–248. DOI: 10.1126/science.1218152
- 33Grainger, J., Dufau, S., & Ziegler, J. C. (2016). A vision of reading. Trends in Cognitive Science, 20(3), 171–179. DOI: 10.1016/j.tics.2015.12.008
- 34Grainger, J., & Ziegler, J. C. (2011) A dual-route approach to orthographic processing. Frontiers in Language Sciences, 2, 54. DOI: 10.3389/fpsyg.2011.00054
- 35Hedenius, M., Ullman, M. T., Alm, P., Jennische, M., & Persson, J. (2013). Enhanced recognition memory after incidental encoding in children with developmental dyslexia. PloS one, 8(5),
e63998 . DOI: 10.1371/journal.pone.0063998 - 36Ise, E., Arnoldi, C. J., Bartling, J., & Schulte-Körne, G. (2012). Implicit learning in children with spelling disability: Evidence from artificial grammar learning. Journal of Neural Transmission, 119(9), 999–1010. DOI: 10.1007/s00702-012-0830-y
- 37Janacsek, K., Shattuck, K. F., Tagarelli, K. M., Lum, J. A., Turkeltaub, P. E., & Ullman, M. T. (2020). Sequence learning in the human brain: a functional neuroanatomical meta-analysis of serial reaction time studies. NeuroImage, 207,
116387 . DOI: 10.1016/j.neuroimage.2019.116387 - 38Jared, D. (2002). Spelling–sound consistency and regularity effects in word naming. Journal of Memory and Language, 46(4), 723–750. DOI: 10.1006/jmla.2001.2827
- 39Jared, D., McRae, K., & Seidenberg, M. S. (1990). The basis of consistency effects in word naming. Journal of Memory and Language, 29(6), 687–715. DOI: 10.1016/0749-596X(90)90044-Z
- 40Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: lexical decision data for 28,730 monosyllabic and disyllabic English words. Behavioral Research Methods, 44, 287–304. DOI: 10.3758/s13428-011-0118-4
- 41Kühnel, A., Gaschler, R., Frensch, P. A., Cohen, A., & Wenke, D. (2019). Lack of automatic vocal response learning while reading aloud – An implicit sequence learning study. Experimental Psychology, 66(4), 266–280. DOI: 10.1027/1618-3169/a000451
- 42Lelonkiewicz, J. R., Ktori, M., & Crepaldi, D. (2020). Morphemes as letter chunks: Discovering affixes through visual regularities. Journal of Memory and Language, 115,
104152 . DOI: 10.1016/j.jml.2020.104152 - 43Lukács, Á., Kemény, F., Lum, J. A., & Ullman, M. T. (2017). Learning and overnight retention in declarative memory in specific language impairment. PloS one, 12(1),
e0169474 . DOI: 10.1371/journal.pone.0169474 - 44Manelis, L. (1974). The effect of meaningfulness in tachistoscopic word perception. Perception & Psychophysics, 16, 182–192. DOI: 10.3758/BF03203272
- 45Marelli, M., Amenta, S., & Crepaldi, D. (2015). Semantic transparency in free stems: The effect of orthography-semantics consistency on word recognition. Quarterly Journal of Experimental Psychology, 68(8), 1571–1583. DOI: 10.1080/17470218.2014.959709
- 46Massaro, D. W., Jastrzembski, J. E., & Lucas, P. A. (1981). Frequency, orthographic regularity, and lexical status in letter and word perception. Psychology of Learning and Motivation, 15, 163–200. DOI: 10.1016/S0079-7421(08)60175-9
- 47Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 314–324. DOI: 10.3758/s13428-011-0168-7
- 48Maurer, U., Blau, V. C., Yoncheva, Y. N., & McCandliss, B. D. (2010). Development of visual expertise for reading: rapid emergence of visual familiarity for an artificial script. Developmental Neuropsychology, 35(4), 404–422. DOI: 10.1080/87565641.2010.480916
- 49McClelland, J. L., & Johnston, J. C. (1977). The role of familiar units in perception of words and nonwords. Perception & Psychophysics, 22, 249–261. DOI: 10.3758/BF03199687
- 50Newport, E. L. (2016). Statistical language learning: Computational, maturational, and linguistic constraints. Language and Cognition, 8(3), 447–461. DOI: 10.1017/langcog.2016.20
- 51Nigro, L., Jiménez-Fernández, G., Simpson, I. C., & Defior, S. (2015). Implicit learning of written regularities and its relation to literacy acquisition in a shallow orthography. Journal of Psycholinguistic Research, 44(5), 571–585. DOI: 10.1007/s10936-014-9303-9
- 52Nigro, L., Jiménez-Fernández, G., Simpson, I. C., & Defior, S. (2016). Implicit learning of non-linguistic and linguistic regularities in children with dyslexia. Annals of Dyslexia, 66(2), 202–218. DOI: 10.1007/s11881-015-0116-9
- 53Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19(1), 1–32. DOI: 10.1016/0010-0285(87)90002-8
- 54Orbán, G., Fiser, J., Aslin, R., & Lengyel, M. (2008). Bayesian learning of visual chunks by human observers. Proceedings of the National Academy of Sciences, 105(7), 2745–2750. DOI: 10.1073/pnas.0708424105
- 55Owsowitz, S. E. (1963). The Effects of Word Familiarity and Letter Structure Familiarity on the Perception of Words. Santa Monica, CA: Rand Corporation Publications.
- 56Pacton, S., Perruchet, P., Fayol, M., & Cleeremans, A. (2001). Implicit learning out of the lab: The case of orthographic regularities. Journal of Experimental Psychology: General, 130(3), 401. DOI: 10.1037/0096-3445.130.3.401
- 57Pashler, H., Cepeda, N. J., Wixted, J. T., & Rohrer, D. (2005). When does feedback facilitate learning of words? Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(1), 3–8. DOI: 10.1037/0278-7393.31.1.3
- 58Perruchet, P. (2019). What mechanisms underlie implicit statistical learning? Transitional probabilities versus chunks in language learning. Topics in Cognitive Science, 11(3), 520–535. DOI: 10.1111/tops.12403
- 59Perruchet, P., & Pacton, S. (2006) Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 10(5), 233–238. DOI: 10.1016/j.tics.2006.03.006
- 60Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental modeling in the development of computational theories: The CDP+ model of reading aloud. Psychological Review, 114(2), 273–315. DOI: 10.1037/0033-295X.114.2.273
- 61Piantadosi, S. T. (2014). Zipf’s word frequency law in natural language: A critical review and future directions. Psychonomic Bulletin and Review, 21(5), 1112–1130. DOI: 10.3758/s13423-014-0585-6
- 62Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioral and Brain Sciences, 36(04), 329–347. DOI: 10.1017/S0140525X12001495
- 63Plaut, D. C., & Gonnerman, L. M. (2000). Are non-semantic morphological effects incompatible with a distributed connectionist approach to lexical processing? Language and Cognitive Processes, 15(4–5), 445–485. DOI: 10.1080/01690960050119661
- 64Pollo, T. C., Kessler, B., & Treiman, R. (2009). Statistical patterns in children’s early writing. Journal of Experimental Child Psychology, 104(4), 410–426. DOI: 10.1016/j.jecp.2009.07.003
- 65Potter, C. E., Wang, T., & Saffran, J. R. (2017). Second language experience facilitates statistical learning of novel linguistic materials. Cognitive Science, 41, 913–927. DOI: 10.1111/cogs.12473
- 66R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/ - 67Rastle, K., Lally, C., Davis, M. H., & Taylor, J. S. H. (2021). The dramatic impact of explicit instruction on learning to read in a new writing system. Psychological Science, 32(4), 471–484. DOI: 10.1177/0956797620968790
- 68Raven, J. C. (1958). Guide to using the Mill Hill Vocabulary Scale with the Progressive Matrices Scales. England, UK: Lewis & Co.
- 69Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: General, 118(3), 219–235. DOI: 10.1037/0096-3445.118.3.219
- 70Reifegerste, J., Veríssimo, J., Rugg, M. D., Pullman, M. Y., Babcock, L., Glei, D. A., … & Ullman, M. T. (2020). Early-life education may help bolster declarative memory in old age, especially for women. Aging, Neuropsychology, and Cognition, 1–35. DOI: 10.1080/13825585.2020.1736497
- 71Rueckl, J. G., Mikolinski, M., Raveh, M., Miner, C. S., & Mars, F. (1997). Morphological priming, fragment completion, and connectionist networks. Journal of Memory and Language, 36(3), 382–405. DOI: 10.1006/jmla.1996.2489
- 72Saffran, J. R., & Kirkham, N. Z. (2018). Infant Statistical Learning. Annual Review of Psychology, 69, 1–23. DOI: 10.1146/annurev-psych-122216-011805
- 73Samara, A., & Caravolas, M. (2017). Artificial grammar learning in dyslexic and nondyslexic adults: Implications for orthographic learning. Scientific Studies of Reading, 21(1), 76–97. DOI: 10.1080/10888438.2016.1262865
- 74Santolin, C., & Saffran, J. R. (2018). Constraints on statistical learning across species. Trends in Cognitive Sciences, 22(1), 52–63. DOI: 10.1016/j.tics.2017.10.003
- 75Schmalz, X., Altoè, G., & Mulatti, C. (2017). Statistical learning and dyslexia: A systematic review. Annals of Dyslexia, 67(2), 147–162. DOI: 10.1007/s11881-016-0136-0
- 76Schmalz, X., & Mulatti, C. (2017). Busting a myth with the Bayes Factor: Effects of letter bigram frequency in visual lexical decision do not reflect reading processes. The Mental Lexicon, 12(2), 263–282. DOI: 10.1075/ml.17009.sch
- 77Seidenberg, M. S. (1987).
Sublexical structures in visual word recognition: Access units or orthographic redundancy? In M. Coltheart (Ed.), Attention & performance XII: The psychology of reading (pp. 245–263). Hillsdale, NJ: Erlbaum. - 78Seidenberg, M. S., & MacDonald, M. C. (2018). The impact of language experience on language and reading. Topics in Language Disorders, 38(1), 66–83. DOI: 10.1097/TLD.0000000000000144
- 79Siegelman, N. (2020). Statistical learning abilities and their relation to language. Language and Linguistics Compass, 14(3),
e12365 . DOI: 10.1111/lnc3.12365 - 80Siegelman, N., Bogaerts, L., Elazar, A., Arciuli, J., & Frost, R. (2018). Linguistic entrenchment: Prior knowledge impacts statistical learning performance. Cognition, 177, 198–213. DOI: 10.1016/j.cognition.2018.04.011
- 81Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability: Theoretical perspectives and empirical evidence. Journal of Memory and Language, 81, 105–120. DOI: 10.1016/j.jml.2015.02.001
- 82Slone, L. K., & Johnson, S. P. (2018). When learning goes beyond statistics: Infants represent visual sequences in terms of chunks. Cognition, 178, 92–102. DOI: 10.1016/j.cognition.2018.05.016
- 83Taylor, J. S. H., Davis, M. H., & Rastle, K. (2017). Comparing and validating methods of reading instruction using behavioural and neural findings in an artificial orthography. Journal of Experimental Psychology: General, 146(6), 826–858. DOI: 10.1037/xge0000301
- 84Thiessen, E. D., Kronstein, A. T., & Hufnagle, D. G. (2013). The extraction and integration framework: A two-process account of statistical learning. Psychological Bulletin, 139(4), 792–814. DOI: 10.1037/a0030801
- 85Turk-Browne, N. B., Jungé, J. A., & Scholl, B. J. (2005). The automaticity of visual statistical learning. Journal of Experimental Psychology: General, 134(4), 552–564. DOI: 10.1037/0096-3445.134.4.552
- 86Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit perceptual anticipation triggered by statistical learning. Journal of Neuroscience, 30(33), 11177–11187. DOI: 10.1523/JNEUROSCI.0858-10.2010
- 87Ulicheva, A., Harvey, H., Aronoff, M., & Rastle, K. (2020). Skilled readers’ sensitivity to meaningful regularities in English writing. Cognition, 195,
103810 . DOI: 10.1016/j.cognition.2018.09.013 - 88Ullman, M. T., Earle, F. S., Walenski, M., & Janacsek, K. (2020). The neurocognition of developmental disorders of language. Annual Review of Psychology, 71, 389–417. DOI: 10.1146/annurev-psych-122216-011555
- 89Westbury, C., & Buchanan, L. (2002). The probability of the least likely non-length-controlled bigram affects lexical decision reaction times. Brain and Language, 81(1–3), 66–78. DOI: 10.1006/brln.2001.2507
- 90Wilson, M., & Knoblich, G. (2005). The Case for Motor Involvement in Perceiving Conspecifics. Psychological Bulletin, 131(3), 460–473. DOI: 10.1037/0033-2909.131.3.460
- 91Zipf, G. (1949). Human Behaviour and the Principle of Least Effffort. Reading, MA: Addison-Wesley.
