Have a personal or library account? Click to login
First Steps in the Use of a Game Engine for Historical Roads and Paths Research Cover

First Steps in the Use of a Game Engine for Historical Roads and Paths Research

By: Willem Vletter  
Open Access
|Feb 2019

References

  1. 1Anderson, EF, McLoughlin, L, Liarokapis, F, Peters, Petridis, P and de Freitas, S. 2010. Developing serious games for cultural heritage: A state-of-the-art review. Virtual Reality, 14: 255275. DOI: 10.1007/s10055-010-0177-3
  2. 2Buro, M. 2004. Call for AI research in RTS games. In: Ferguson, G and McGuinness, D (eds.), The AAAI-04 Workshop on Challenges in Game AI, 139142. Menlo Park: The AAAI Pres.
  3. 3Casimir, M and Rao, A. (eds.) 1992. Mobility and Territoriality. Social and Spatial Boundaries among Foragers, Fishers, Pastoralists and Peripatetics. Oxford: Berg.
  4. 4Caspersen, CJ, Powell, KE and Christenson, GM. 1985. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Reports, 100(2): 126131.
  5. 5Ch’ng, E. 2007. Using Games Engines for Archaeological Visualization: Recreating Lost Worlds. In: Mehdi, Q, Estraillier, P and Eboueya, M (eds.), AI, Animation, Mobile, Educational and Serious Games. Proceedings of the 11th International Conference on Computer Games, 2630. Wolverhampton: The university of Wolverhampton School of Computing and information technology.
  6. 6Ch’ng, E. 2009. Experiential archaeology: Is virtual time travel possible? Journal of Cultural Heritage, 10: 458470. DOI: 10.1016/j.culher.2009.02.001
  7. 7Citter, C. 2012. Modelli predittivi e archeologia postclassica: Vecchi strumenti e nuove prospettive. In: Redi, F and Forgione, A (eds.), Atti del VI convegno nazionale della SAMI, L’Aquila, 2012, 3–6. Modelli predittivi e archeologia postclassica: Vecchi strumenti e nuove prospettive, 1215. Firenze: Edizioni All’Insegna del Giglio.
  8. 8Crutchley, S. 2010. The Light Fantastic, using airborne lidar in archaeological survey. Swindon: English Heritage.
  9. 9Denecke, D. 1969. Methodische Untersuchungen zur historisch-geographischen Wegeforschung im Raum zwischen Solling und Harz. Ein Beitr. zur Rekonstruktion d. mittelalterl. Kulturlandschaft. Göttingen: Goltze.
  10. 10Doneus, M. 2013. Die hinterlassene Landschaft Prospektion und Interpretation. Die Landschaftsarchäologie in Mitteilungen der Prähistorischen Kommission, 78. Vienna: OAW. DOI: 10.2307/j.ctt1vw0qcb
  11. 11Doneus, M and Briese, C. 2011. Airborne Laser Scanning in Forested Areas – Potential and Limitations of an Archaeological Prospection Technique. In: Cowley, D (ed.), Remote Sensing for Archaeological Heritage Management. Proceedings EAC, 5376. Budapest: Archaeolingua.
  12. 12Fovet, E and Zaksek, K. 2014. Path network modelling and network of aggregated settlements: A case study in Languedoc (Southeastern France). In: Polla, S and Verhagen, Ph (eds.), Computational approaches to the study of movement in archaeology. Theory, practice and interpretation of factors and effects of long term landscape formation and transformation, 4372. Berlin: de Gruyter.
  13. 13Gietl, R, Doneus, M and Fera, M. 2008. Cost Distance Analysis in an Alpine Environment: Comparison of Different Cost Surface Modules. In: Posluschny, A, Lambers, K and Herzog, I (eds.), Layers of Perception. Proceedings of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology Berlin, Germany, April 2–6, 2007 (Kolloquien zur Vor- und Frühgeschichte), 10: 336341. Bonn: Dr Rudolf Habelt GmbH.
  14. 14Granberg, A. 2018. A*Pathfinding Project. Available at: https://arongranberg.com/astar/ [Last accessed 31 December 2018].
  15. 15Hagelbäck, J and Johansson, SJ. 2008. The rise of potential fields in real time strategy bots. In: Darken, C and Mateas, M (eds.), AIIDE 08: The Fourth Artificial Intelligence and Interactive Digital Entertainment Conference, 4247. Menlo Park: The AAAI Pres.
  16. 16Herzog, I. 2013. Theory and practice of cost functions. In: Contreras, MF and Melero, FJ (eds.), Fusion of culture. Proceedings of the 38th Annual Conference on Computer Applications and Quantitative Methods in Archaeology, Granada, Spain, April 2010, 375382. Oxford: Archaeopress.
  17. 17Herzog, I. 2014. Least-cost Paths. Some Methodological Issues. Internet Archaeology, 36. [Last accessed 28 May 2014]. DOI: 10.11141/ia.36.5
  18. 18Herzog, I and Posluschny, A. 2011. Tilt – Slope-Dependent Least Cost Path Calculations Revisited. In: Jerem, EE, Redő, F and Szeverényi, V (eds.), On the Road to Reconstructing the Past. Computer Applications and Quantitative Methods in Archaeology (CAA). Proceedings of the 36th International Conference. Budapest, April 2–6, 2008, 212218. Budapest: Archeaeolingua.
  19. 19Howey, MCL. 2011. Multiple pathways across past landscapes: Circuit theory as a complementary geospatial method to least cost path for modeling past movement. Journal of Archaeological Science, 38: 25232535. DOI: 10.1016/j.jas.2011.03.024
  20. 20Jurney, C. 2008. Company of Heroes Squad Formations Explained. AI game programming wisdom. Cengage Learning PTR, 4: 6169.
  21. 21Krizsanits, B and Horvath, M. 2012. Das Leithagebirge. Grenze und Verbindung. Weitra: Bibliothek der Provinz.
  22. 22Matthews, J. 2002. Basic A* Pathfinding Made Simple. AI Game Programming Wisdom, 1: 105113.
  23. 23Nareyek, A. 2004. Smarter games are making for a better user experience. What does the future hold? Ai in computer games. ACM Queue, 1(10): 5865. DOI: 10.1145/971564.971593
  24. 24Olsson, P. 2008. Practical Pathfinding in Dynamic Environments. AI game programming wisdom. Cengage Learning PTR, 4: 179191.
  25. 25Opitz, RS and Cowley, DC. (eds.) 2012. Interpreting archaeological topography: Lasers, 3D data, observation, visualisation and applications. Oxford: Oxbow.
  26. 26Orkin, J. 2002. Tips from the trenches. AI Game Programming Wisdom, 1: 105113.
  27. 27Orkin, J. 2004. Symbolic Representation of Game World State: Toward Real-Time Planning in Games. The proceedings of the AAAI-04 Workshop on Challenges in Game AI, 2630. Menlo Park: The AAAI Pres.
  28. 28Paanakker, F. 2008. Risk-Adverse Pathfinding Using Influence Maps. AI game programming wisdom. Cengage Learning PTR, 4: 173178.
  29. 29Soule, RG and Goldman, S. 1972. Terrain Coefficients for Energy Cost Reduction. Journal of Applied Physiology, 32(5): 706708. DOI: 10.1152/jappl.1972.32.5.706
  30. 30Stout, B. 2000. The Basics of A* for Path Planning. Game Programming Gems, 1: 254263.
  31. 31Tarr, L. 1978. Karren, Kutsche, Karosse: Eine Geschichte des Wagens. Berlin: Henschel.
  32. 32Van Lanen, RJ, Kosian, MC, Groenewoudt, BJ and Jansma, E. 2015. Finding a way: Modeling Landscape Prerequisites for Roman and Early-Medieval Routes in the Netherlands. Geoarchaeology: An international Journal, 30: 200222. DOI: 10.1002/gea.21510
  33. 33Verhagen, JWHP. 2013 On the Road to Nowhere? Least Cost Paths, Accessibility and the Predictive Modelling Perspective. In: Contreras, F, Farjas, M and Melero, FJ (eds.), Fusion of culture. Proceedings of the 38th Annual Conference on Computer Applications and Quantitative Methods in Archaeology, Granada, Spain, April 2010 (BAR International Series 2494), 383390. Oxford: Archaeopress.
  34. 34Vletter, WF. 2014. (Semi) automatic extraction from Airborne Laser Scan data of roads and paths in forested areas. In: Hadjimitsis, DG, et al. (eds.), Proceedings of the Second International Conference on Remote Sensing and Geoinformation of the Environment, SPIE 9229, 11. Bellingham: SPIE. DOI: 10.1117/12.2069709
DOI: https://doi.org/10.5334/jcaa.18 | Journal eISSN: 2514-8362
Language: English
Submitted on: Aug 20, 2018
Accepted on: Jan 16, 2019
Published on: Feb 28, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Willem Vletter, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.