References
- 1Adams, JR. 2003. Ships, innovation and social change: aspects of carvel shipbuilding in Northern Europe 1450–1850. Stockholm: University of Stockholm.
- 2Akkaynak, D, Britton, W, Twardowski, M and Dalgleish, F. 2022. Towards A Lidar-Integrated Underwater Imaging System. Ocean Science Meeting 2022. Available at
https://www.youtube.com/watch?v=Dil_S8JoMu0 [last accessed 17 January 2024]. - 3Ballard, RD, McCann, AM, Yoerger, D, Whitcomb, L, Mindell, D, Oleson, J, Singh, H, Foley, B, Adams, J, Piechota, D and Giangrande, C. 2000. The discovery of ancient history in the deep sea using advanced deep submergence technology. Deep sea research part I: Oceanographic research papers, 47(9): 1591–1620. DOI: 10.1016/S0967-0637(99)00117-X
- 4Bass, GF and Rosencrantz, D. 1972.
Submersibles in underwater search and photogrammetric mapping . In: Underwater archaeology. A nascent discipline. Paris: UNESCO. pp. 271–283. - 5Bernardini, F, Mittleman, J, Rushmeier, H, Silva, C and Taubin, G. 1999. The ball-pivoting algorithm for surface reconstruction. IEEE transactions on visualization and computer graphics, 5(4): 349–359. DOI: 10.1109/2945.817351
- 6Bingham, B, Foley, B, Singh, H, Camilli, R, Delaporta, K, Eustice, R, Mallios, A, Mindell, D, Roman, C and Sakellariou, D. 2010. Robotic tools for deep water archaeology: Surveying an ancient shipwreck with an autonomous underwater vehicle. Journal of Field Robotics, 27(6): 702–717. DOI: 10.1002/rob.20350
- 7Campos, C, Elvira, R, Rodríguez, JJG, Montiel, JM and Tardós, JD. 2021. Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics, 37(6): 1874–1890. DOI: 10.1109/TRO.2021.3075644
- 8Cignoni, P, Callieri, M, Corsini, M, Dellepiane, M, Ganovelli, F and Ranzuglia, G. 2008. Meshlab: an open-source mesh processing tool. In: Scarano, V, De Chiara, R and Erra, U (eds.), Eurographics Italian chapter conference (2008).
The Eurographics Association . pp. 129–136.https://www.blender.org/ [Last accessed 15 January 2024]. - 9Diamanti, E, Løvås, HS, Larsen, MK and Ødegård, Ø. 2021. A multi-camera system for the integrated documentation of Underwater Cultural Heritage of high structural complexity; The case study of M/S Helma wreck. IFAC-PapersOnLine, 54(16): 422–429. DOI: 10.1016/j.ifacol.2021.10.126
- 10Drap, P, Seinturier, J, Hijazi, B, Merad, D, Boi, JM, Chemisky, B, Seguin, E and Long, L. 2015. The ROV 3D Project: Deep-sea underwater survey using photogrammetry: Applications for underwater archaeology. Journal on Computing and Cultural Heritage, 8(4): 1–24. DOI: 10.1145/2757283
- 11Dykking. 2023. Heinkel He 115 bombefly i Ilsvika. Available at
https://www.dykking.no/nyheter/rss/3942-heinkel-he-115-bombefly-i-ilsvika [Last accessed 15 January 2024]. - 12Forbes, T, Goldsmith, M, Mudur, S and Poullis, C. 2018. DeepCaustics: Classification and removal of caustics from underwater imagery. IEEE Journal of Oceanic Engineering, 44(3): 728–738. DOI: 10.1109/JOE.2018.2838939
- 13Gracias, N, Ridao, P, Garcia, R, Escartín, J, L’Hour, M, Cibecchini, F, Campos, R, Carreras, M, Ribas, D, Palomeras, N and Magi, L. 2013.
Mapping the Moon: Using a lightweight AUV to survey the site of the 17th century ship ‘La Lune’ . In: 2013 MTS/IEEE OCEANS-Bergen. IEEE. pp. 1–8. DOI: 10.1109/OCEANS-Bergen.2013.6608142 - 14He, K, Gkioxari, G, Dollár, P and Girshick, R. 2017. Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision.
IEEE . pp. 2961–2969. DOI: 10.1109/ICCV.2017.322 - 15Hodne, LM, Leikvoll, E, Yip, M, Teigen, AL, Stahl, A and Mester, R. 2022. Detecting and suppressing marine snow for underwater visual SLAM. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
IEEE/CVF . pp. 5101–5109. DOI: 10.1109/CVPRW56347.2022.00558 - 16Hunter, JD. 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3): 90–95. DOI: 10.1109/MCSE.2007.55
- 17Johnson-Roberson, M, Bryson, M, Friedman, A, Pizarro, O, Troni, G, Ozog, P and Henderson, JC. 2017. High-resolution underwater robotic vision-based mapping and three-dimensional reconstruction for archaeology. Journal of Field Robotics, 34(4): 625–643. DOI: 10.1002/rob.21658
- 18Karapetyan, N, Johnson, JV and Rekleitis, I. 2021. Human diver-inspired visual navigation: Towards coverage path planning of shipwrecks. Marine Technology Society Journal, 55(4): 24–32. DOI: 10.4031/MTSJ.55.4.6
- 19Kazhdan, M, Bolitho, M and Hoppe, H. 2006.
Poisson surface reconstruction . In: Polthier, K and Sheffer, A (eds.), Eurographics Symposium on Geometry Processing (2006). The Eurographics Association. pp. 61–70. DOI: 10.2312/SGP/SGP06/061-070 - 20Khatib, O, Yeh, X, Brantner, G, Soe, B, Kim, B, Ganguly, S, Stuart, H, Wang, S, Cutkosky, M, Edsinger, A and Mullins, P. 2016. Ocean one: A robotic avatar for oceanic discovery. IEEE Robotics & Automation Magazine, 23(4): 20–29. DOI: 10.1109/MRA.2016.2613281
- 21Leonardi, M, Stahl, A, Brekke, EF and Ludvigsen, M. 2023. UVS: underwater visual SLAM—a robust monocular visual SLAM system for lifelong underwater operations. Autonomous Robots, 47(8): 1367–1385. DOI: 10.1007/s10514-023-10138-0
- 22Leonardi, M, Stahl, A, Gazzea, M, Ludvigsen, M, Rist-Christensen, I and Nornes, SM. 2017.
Vision based obstacle avoidance and motion tracking for autonomous behaviors in underwater vehicles . In: OCEANS 2017-Aberdeen. IEEE. pp. 1–10. DOI: 10.1109/OCEANSE.2017.8084619 - 23Liljebäck, P and Mills, R. 2017.
Eelume: A flexible and subsea resident IMR vehicle . In: OCEANS 2017-Aberdeen. IEEE. pp. 1–4. DOI: 10.1109/OCEANSE.2017.8084826 - 24Ludvigsen, M and Sørensen, AJ. 2016. Towards integrated autonomous underwater operations for ocean mapping and monitoring. Annual Reviews in Control, 42: 145–157. DOI: 10.1016/j.arcontrol.2016.09.013
- 25Nornes, SM, Ludvigsen, M, Ødegard, Ø and Sørensen, AJ. 2015. Underwater photogrammetric mapping of an intact standing steel wreck with ROV. IFAC-PapersOnLine, 48(2): 206–211. DOI: 10.1016/j.ifacol.2015.06.034
- 26Ochoa, E, Gracias, N, Istenič, K, Bosch, J, Cieślak, P and García, R. 2022. Collision detection and avoidance for underwater vehicles using omnidirectional vision. Sensors, 22(14): 5354. DOI: 10.3390/s22145354
- 27Ødegård, Ø, Nornes, SM, Ludvigsen, M, Maarleveld, TJ and Sørensen, AJ. 2016a. Autonomy in marine archaeology. In: Campana, S, Scopigno, R, Carpentiero, G and Cirillo, M (eds.), CAA2015: Keep the Revolution Going. Proceedings of the 43rd Annual Conference on Computer Applications and Quantitative Methods in Archaeology. Oxford:
Archaeopress , pp. 857–865. - 28Ødegård, Ø, Sørensen, AJ, Hansen, RE and Ludvigsen, M. 2016b. A new method for underwater archaeological surveying using sensors and unmanned platforms. IFAC-PapersOnLine, 49(23): 486–493. DOI: 10.1016/j.ifacol.2016.10.453
- 29Pacheco-Ruiz, R, Adams, J, Pedrotti, F, Grant, M, Holmlund, J and Bailey, C. 2019. Deep sea archaeological survey in the Black Sea–Robotic documentation of 2,500 years of human seafaring. Deep Sea Research Part I: Oceanographic Research Papers, 152: 103087. DOI: 10.1016/j.dsr.2019.103087
- 30Palomeras, N, Hurtós, N, Carreras, M and Ridao, P. 2018. Autonomous mapping of underwater 3-D structures: From view planning to execution. IEEE Robotics and Automation Letters, 3(3): 1965–1971. DOI: 10.1109/LRA.2018.2808364
- 31Reza, AM. 2004. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI signal processing systems for signal, image and video technology, 38: 35–44. DOI: 10.1023/B:VLSI.0000028532.53893.82
- 32Schönberger, JL and Frahm, JM. 2016. Structure-from-motion revisited. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE . pp. 4104–4113. DOI: 10.1109/CVPR.2016.445 - 33Sheinin, M and Schechner, YY. 2016. The next best underwater view. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE . pp. 3764–3773. DOI: 10.1109/CVPR.2016.409 - 34Song, Y, Nakath, D, She, M and Köser, K. 2022. Optical imaging and image restoration techniques for deep ocean mapping: a comprehensive survey. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 90(3): 243–267. DOI: 10.1007/s41064-022-00206-y
- 35Soreide, F and Jasinski, ME. 2005. Ormen Lange: Investigation and excavation of a shipwreck in 170m depth. In: Proceedings of OCEANS 2005 MTS/IEEE.
IEEE . pp. 2334–2338. DOI: 10.1109/OCEANS.2005.1640113 - 36Tomar, S. 2006. Converting video formats with FFmpeg. Linux Journal, 2006(146): 10.
- 37Vasilijevic, A, Buxton, B, Sharvit, J, Stilinovic, N, Nad, D, Miskovic, N, Planer, D, Hale, J and Vukic, Z. 2015.
An ASV for coastal underwater archaeology: The Pladypos survey of Caesarea Maritima, Israel . In: OCEANS 2015-Genova. IEEE. pp. 1–7. DOI: 10.1109/OCEANS-Genova.2015.7271495 - 38Williams, SB, Pizarro, O and Foley, B. 2016. Return to Antikythera: Multi-session SLAM based AUV mapping of a first century BC wreck site. In: Wettergeen, DS and Barfoot, TD (eds.), Field and Service Robotics: Results of the 10th International Conference.
Springer . pp. 45–59. DOI: 10.1007/978-3-319-27702-8_4 - 39Wu, J, Bingham, RC, Ting, S, Yager, K, Wood, ZJ, Gambin, T and Clark, CM. 2019. Multi-AUV motion planning for archeological site mapping and photogrammetric reconstruction. Journal of Field Robotics, 36(7): 1250–1269. DOI: 10.1002/rob.21905
- 40Yang, M, Hu, J, Li, C, Rohde, G, Du, Y and Hu, K. 2019. An in-depth survey of underwater image enhancement and restoration. IEEE Access, 7: 123638–123657. DOI: 10.1109/ACCESS.2019.2932611
- 41Yu, Q, Sui, W, Wang, Y, Xiang, S and Pan, C. 2019. Incremental Poisson Surface Reconstruction for large scale three-dimensional modeling. In: Lin, Z, Wang, L, Yang, J, Shi, G, Tan, T, Zheng, N, Chen, X and Zhang, Y (eds.), Pattern Recognition and Computer Vision: Second Chinese Conference, PRCV 2019. Cham:
Springer . pp. 442–453. DOI: 10.1007/978-3-030-31726-3_38 - 42Zhang, Z. 2000. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11): 1330–1334. DOI: 10.1109/34.888718
- 43Zhou, QY, Park, J and Koltun, V. 2018. Open3D: A modern library for 3D data processing. arXiv:1801.09847. DOI: 10.48550/arXiv.1801.09847
- 44Zwilgmeyer, PGO, Yip, M, Teigen, AL, Mester, R and Stahl, A. 2021. The VAROS synthetic underwater data set: Towards realistic multi-sensor underwater data with ground truth. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW).
IEEE/CVF . pp. 3722–3730. DOI: 10.1109/ICCVW54120.2021.00415
