Have a personal or library account? Click to login
Digital Transformation in Materials Science: A User Journey of Nanoindentation, Image Analysis and Simulations Cover

Digital Transformation in Materials Science: A User Journey of Nanoindentation, Image Analysis and Simulations

Open Access
|Nov 2025

References

  1. Apache CouchDB (2024) Apache CouchDB. Available at: https://couchdb.apache.org/ (Accessed: 29 May 2024).
  2. Baker, M. (2016) ‘1,500 scientists lift the lid on reproducibility’, Nature, 533, pp. 452454. Available at: 10.1038/533452a
  3. Barker, M., Chue Hong, N., Katz, D., Lamprecht, A.L., Martinez-Ortiz, C., Psomopoulos, F., Harrow, J. et al. (2022) ‘Introducing the FAIR Principles for research software’, Scientific Data, 9, p. 622. Available at: 10.1038/s41597-022-01710-x
  4. Celebi, R., Moreira, J., Hassan, A., Ayyar, S., Ridder, L., Kuhn, T. and Dumontier, M. (2020) ‘Towards FAIR protocols and workflows: the OpenPREDICT use case’, PeerJ Computer Science, 6, p. e281. Available at: 10.7717/peerj-cs.281
  5. Chen, F., Slusallek, P., Müller, M. and Dahmen, T. (2022) ‘Chaldene: Towards Visual Programming Image Processing in Jupyter Notebooks’, 2022 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, pp. 13. Available at: 10.1109/VL/HCC53370.2022.9832910
  6. Chue Hong, N., Katz, D., Barker, M., Lamprecht, A.L., Martinez, C., Psomopoulos, F., Harrow, J. et al. (2022) ‘FAIR Principles for Research Software (FAIR4RS Principles)’.
  7. Coscine (2024) Coscine. Available at: https://about.coscine.de/en/ (Accessed: 29 May 2024).
  8. DataCite Metadata Working Group (2016) DataCite Metadata Schema Documentation for the Publication and Citation of Research Data v4.0. Tech. rep., DataCite e.V.
  9. de Visser, C., Johansson, L., Kulkarni, P., Mei, H., Neerincx, P., van der Velde, J., Horvatovich, P. et al. (2023) ‘Ten quick tips for building FAIR workflows’, PLoS Computational Biology, 19, p. e1011369. Available at: 10.1371/journal.pcbi.1011369
  10. DeCost, B., Hattrick-Simpers, J., Trautt, Z., Kusne, A., Campo, E. and Green, M. (2020) ‘Scientific AI in Materials Science: a Path to a Sustainable and Scalable Paradigm’, Machine Learning: Science and Technology, 1. Available at: 10.1088/2632-2153/ab9a20
  11. Deutsche Forschungsgemeinschaft (2022) Guidelines for Safeguarding Good Research Practice. Code of Conduct. Deutsche Forschungsgemeinschaft
  12. German Research Foundation (2022) Leitlinien zur Sicherung guter wissenschaftlicher Praxis. Available at: 10.5281/zenodo.3923601
  13. GitLab (2024) GitLab. Available at: https://about.gitlab.com/ (Accessed: 29 May 2024).
  14. Go-FAIR (2024) Go-FAIR Initiative. Available at: https://www.go-fair.org/ (Accessed: 29 May 2024).
  15. Goble, C., Cohen-Boulakia, S., Soiland-Reyes, S., Garijo, D., Gil, Y., Crusoe, M., Peters, K. et al. (2020) ‘FAIR Computational Workflows’, Data Intelligence, 2, pp. 108121. Available at: 10.1162/dint_a_00033
  16. Higgins, S., Nogiwa-Valdez, A. and Stevens, M. (2022) ‘Considerations for implementing electronic laboratory notebooks in an academic research environment’, Nature Protocols, 17, pp. 179189. Available at: 10.1038/s41596-021-00645-8
  17. Himanen, L., Geurts, A., Foster, A. and Rinke, P. (2019) ‘Data-driven materials science: status, challenges and perspectives’, Advanced Science, 6, p. 42. Available at: 10.1002/advs.201900808
  18. Janssen, J., Surendralal, S., Lysogorskiy, Y., Todorova, M., Hickel, T., Drautz, R. and Neugebauer, J. (2019) ‘pyiron: An integrated development environment for computational materials science’, Computational Materials Science, 163, pp. 2436. Available at: 10.1016/j.commatsci.2018.07.043
  19. Jelinek, B., Groh, S., Horstemeyer, M., Houze, J., Kim, S., Wagner, G., Moitra, A. et al. (2012) ‘Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys’, Physical Review B, 85. Available at: 10.1103/PhysRevB.85.245102
  20. Kanza, S., Willoughby, C., Gibbins, N., Whitby, R., Frey, J., Erjavec, J., Zupančič, K. et al. (2017) ‘Electronic lab notebooks: can they replace paper?’, Journal of Cheminformatics, 9, p. 31. Available at: 10.1186/s13321-017-0221-3
  21. MatPortal: the ontology repository for materials science (2024) MatPortal: the ontology repository for materials science. Available at: https://matportal.org/ (Accessed: 03 October 2024).
  22. MatWerk Ontology templates (2024) MatWerk Ontology templates. Available at: https://git.rwth-aachen.de/nfdi-matwerk/ta-oms/mste (Accessed: 03 October 2024).
  23. MSE Knowledge Graph (2024) MSE Knowledge Graph. Available at: https://demo.fiz-karlsruhe.de/matwerk/ (Accessed: 29 May 2024).
  24. Nečas, D. and Klapetek, P. (2012) ‘Gwyddion: an open-source software for SPM data analysis’, Open Physics, 10, pp. 181188. Available at: 10.2478/s11534-011-0096-2
  25. Nicolae, B., Islam, T., Ross, R., van Dam, H., Assogba, K., Shpilker, P., Titov, M. et al. (2023) ‘Building the I (Interoperability) of FAIR for Performance Reproducibility of Large-Scale Composable Workflows in RECUP’, 2023 IEEE 19th International Conference on e-Science (e-Science). IEEE, pp. 17. Available at: 10.1109/e-Science58273.2023.10254808
  26. Oliver, W. and Pharr, G. (1992) ‘An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments’, Journal of Materials Research, 7, pp. 15641583. Available at: 10.1557/JMR.1992.1564
  27. Oliver, W. and Pharr, G. (2004) ‘Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology’, Journal of Materials Research, 19, pp. 320. Available at: 10.1557/jmr.2004.19.1.3
  28. PASTA-ELN (2024) PASTA-ELN. Available at: https://github.com/PASTA-ELN/pasta-eln (Accessed: 29 May 2024).
  29. pyiron (2024) pyiron. Available at: https://github.com/pyiron (Accessed: 29 May 2024).
  30. Rodrigues, J., Florea, L., de Oliveira, M., Diamond, D. and Oliveira, O. (2021) ‘Big data and machine learning for materials science’, Discover Materials, 1, p. 12. Available at: 10.1007/s43939-021-00012-0
  31. Scheffler, M., Aeschlimann, M., Albrecht, M., Bereau, T., Bungartz, H.J., Felser, C., Greiner, M. et al. (2022) ‘FAIR data enabling new horizons for materials research’, Nature, 604, pp. 635642. Available at: 10.1038/s41586-022-04501-x
  32. Schema.org (2024) Schema.org. Available at: https://schema.org/ (Accessed: 03 October 2024).
  33. Sefton, P., Carragáin, E.Ó., Soiland-Reyes, S., Corcho, O., Garijo, D., Palma, R., Coppens, F. et al. (2023) RO-Crate Metadata Specification 1.1.3, Zenodo.
  34. Soiland-Reyes, S., Sefton, P., Crosas, M., Castro, L., Coppens, F., Fernández, J., Garijo, D. et al. (2022) ‘Packaging research artefacts with RO-Crate’, DS, 5, pp. 97138. Available at: 10.3233/DS-210053
  35. Stickdorn, M. and Schneider, J. (2012) This is Service Design Thinking: Basics, Tools, Cases. Wiley.
  36. The MatWerk Ontology (MWO) (2024) The MatWerk Ontology (MWO). Available at: http://purls.helmholtz-metadaten.de/mwo (Accessed: 29 May 2024).
  37. Tsybenko, H., Menon, S., Chen, F., Guzman, A., Grünwald, K., Brinckmann, S., Hickel, T. et al. (2023a) Project Data: Elastic properties of EN AW-1050A alloy: a scientific user journey built upon NFDI-MatWerk infrastructure solutions. Available at: http://hdl.handle.net/21.11102/4781e163-229d-4a2a-91c2-75e107c21730 (Accessed: 29 May 2024).
  38. Tsybenko, H., Menon, S., Chen, F., Guzman, A., Grünwald, K., Brinckmann, S., Hickel, T. et al. (2023b) Project Data: Elastic properties of EN AW-1050A alloy: a scientific user journey built upon NFDI-MatWerk infrastructure solutions. Available at: https://git.rwth-aachen.de/nfdi-matwerk/ta-wsd1/user-journey-indentation (Accessed: 17 October 2024).
  39. van der Walt, S., Schönberger, J., Nunez-Iglesias, J., Boulogne, F., Warner, J., Yager, N., Gouillart, E. et al. (2014) ‘scikit-image: image processing in Python’, PeerJ, 2, p. e453. Available at: 10.7717/peerj.453
  40. Wilkinson, M., Dumontier, M., Aalbersberg, I., Appleton, G., Axton, M., Baak, A., Blomberg, N. et al. (2016) ‘The FAIR Guiding Principles for scientific data management and stewardship’, Scientific Data, 3, p. 160018. Available at: 10.1038/sdata.2016.18
  41. Wilkinson, S.R., Eisenhauer, G., Kapadia, A., Knight, K., Logan, J., Widener, P. and Wolf, M. (2022) ‘F*** workflows: when parts of FAIR are missing’, in 2022 IEEE 18th International Conference on e-Science (e-Science), Salt Lake City, UT, USA, pp. 507512. Available at: 10.1109/eScience55777.2022.00090
Language: English
Submitted on: May 5, 2025
|
Accepted on: Oct 27, 2025
|
Published on: Nov 17, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Hanna Tsybenko, Sarath Menon, Fei Chen, Abril Azocar Guzman, Katharina Grünwald, Steffen Brinckmann, Tilmann Hickel, Tim Dahmen, Volker Hofmann, Stefan Sandfeld, Ruth Schwaiger, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.