References
- Apache CouchDB (2024) Apache CouchDB. Available at:
https://couchdb.apache.org/ (Accessed: 29 May 2024). - Baker, M. (2016) ‘1,500 scientists lift the lid on reproducibility’, Nature, 533, pp. 452–454. Available at: 10.1038/533452a
- Barker, M., Chue Hong, N., Katz, D., Lamprecht, A.L., Martinez-Ortiz, C., Psomopoulos, F., Harrow, J. et al. (2022) ‘Introducing the FAIR Principles for research software’, Scientific Data, 9, p.
622 . Available at: 10.1038/s41597-022-01710-x - Celebi, R., Moreira, J., Hassan, A., Ayyar, S., Ridder, L., Kuhn, T. and Dumontier, M. (2020) ‘Towards FAIR protocols and workflows: the OpenPREDICT use case’, PeerJ Computer Science, 6, p.
e281 . Available at: 10.7717/peerj-cs.281 - Chen, F., Slusallek, P., Müller, M. and Dahmen, T. (2022) ‘Chaldene: Towards Visual Programming Image Processing in Jupyter Notebooks’, 2022 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE , pp. 1–3. Available at: 10.1109/VL/HCC53370.2022.9832910 - Chue Hong, N., Katz, D., Barker, M., Lamprecht, A.L., Martinez, C., Psomopoulos, F., Harrow, J. et al. (2022) ‘FAIR Principles for Research Software (FAIR4RS Principles)’.
- Coscine (2024) Coscine. Available at:
https://about.coscine.de/en/ (Accessed: 29 May 2024). - DataCite Metadata Working Group (2016) DataCite Metadata Schema Documentation for the Publication and Citation of Research Data v4.0. Tech. rep., DataCite e.V.
- de Visser, C., Johansson, L., Kulkarni, P., Mei, H., Neerincx, P., van der Velde, J., Horvatovich, P. et al. (2023) ‘Ten quick tips for building FAIR workflows’, PLoS Computational Biology, 19, p.
e1011369 . Available at: 10.1371/journal.pcbi.1011369 - DeCost, B., Hattrick-Simpers, J., Trautt, Z., Kusne, A., Campo, E. and Green, M. (2020) ‘Scientific AI in Materials Science: a Path to a Sustainable and Scalable Paradigm’, Machine Learning: Science and Technology, 1. Available at: 10.1088/2632-2153/ab9a20
- Deutsche Forschungsgemeinschaft (2022)
Guidelines for Safeguarding Good Research Practice. Code of Conduct . Deutsche Forschungsgemeinschaft - German Research Foundation (2022) Leitlinien zur Sicherung guter wissenschaftlicher Praxis. Available at: 10.5281/zenodo.3923601
- GitLab (2024) GitLab. Available at:
https://about.gitlab.com/ (Accessed: 29 May 2024). - Go-FAIR (2024) Go-FAIR Initiative. Available at:
https://www.go-fair.org/ (Accessed: 29 May 2024). - Goble, C., Cohen-Boulakia, S., Soiland-Reyes, S., Garijo, D., Gil, Y., Crusoe, M., Peters, K. et al. (2020) ‘FAIR Computational Workflows’, Data Intelligence, 2, pp. 108–121. Available at: 10.1162/dint_a_00033
- Higgins, S., Nogiwa-Valdez, A. and Stevens, M. (2022) ‘Considerations for implementing electronic laboratory notebooks in an academic research environment’, Nature Protocols, 17, pp. 179–189. Available at: 10.1038/s41596-021-00645-8
- Himanen, L., Geurts, A., Foster, A. and Rinke, P. (2019) ‘Data-driven materials science: status, challenges and perspectives’, Advanced Science, 6, p.
42 . Available at: 10.1002/advs.201900808 - Janssen, J., Surendralal, S., Lysogorskiy, Y., Todorova, M., Hickel, T., Drautz, R. and Neugebauer, J. (2019) ‘pyiron: An integrated development environment for computational materials science’, Computational Materials Science, 163, pp. 24–36. Available at: 10.1016/j.commatsci.2018.07.043
- Jelinek, B., Groh, S., Horstemeyer, M., Houze, J., Kim, S., Wagner, G., Moitra, A. et al. (2012) ‘Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys’, Physical Review B, 85. Available at: 10.1103/PhysRevB.85.245102
- Kanza, S., Willoughby, C., Gibbins, N., Whitby, R., Frey, J., Erjavec, J., Zupančič, K. et al. (2017) ‘Electronic lab notebooks: can they replace paper?’, Journal of Cheminformatics, 9, p.
31 . Available at: 10.1186/s13321-017-0221-3 - MatPortal: the ontology repository for materials science (2024) MatPortal: the ontology repository for materials science. Available at:
https://matportal.org/ (Accessed: 03 October 2024). - MatWerk Ontology templates (2024) MatWerk Ontology templates. Available at:
https://git.rwth-aachen.de/nfdi-matwerk/ta-oms/mste (Accessed: 03 October 2024). - MSE Knowledge Graph (2024) MSE Knowledge Graph. Available at:
https://demo.fiz-karlsruhe.de/matwerk/ (Accessed: 29 May 2024). - Nečas, D. and Klapetek, P. (2012) ‘Gwyddion: an open-source software for SPM data analysis’, Open Physics, 10, pp. 181–188. Available at: 10.2478/s11534-011-0096-2
- Nicolae, B., Islam, T., Ross, R., van Dam, H., Assogba, K., Shpilker, P., Titov, M. et al. (2023) ‘Building the I (Interoperability) of FAIR for Performance Reproducibility of Large-Scale Composable Workflows in RECUP’, 2023 IEEE 19th International Conference on e-Science (e-Science).
IEEE , pp. 1–7. Available at: 10.1109/e-Science58273.2023.10254808 - Oliver, W. and Pharr, G. (1992) ‘An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments’, Journal of Materials Research, 7, pp. 1564–1583. Available at: 10.1557/JMR.1992.1564
- Oliver, W. and Pharr, G. (2004) ‘Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology’, Journal of Materials Research, 19, pp. 3–20. Available at: 10.1557/jmr.2004.19.1.3
- PASTA-ELN (2024) PASTA-ELN. Available at:
https://github.com/PASTA-ELN/pasta-eln (Accessed: 29 May 2024). - pyiron (2024) pyiron. Available at:
https://github.com/pyiron (Accessed: 29 May 2024). - Rodrigues, J., Florea, L., de Oliveira, M., Diamond, D. and Oliveira, O. (2021) ‘Big data and machine learning for materials science’, Discover Materials, 1, p.
12 . Available at: 10.1007/s43939-021-00012-0 - Scheffler, M., Aeschlimann, M., Albrecht, M., Bereau, T., Bungartz, H.J., Felser, C., Greiner, M. et al. (2022) ‘FAIR data enabling new horizons for materials research’, Nature, 604, pp. 635–642. Available at: 10.1038/s41586-022-04501-x
- Schema.org (2024) Schema.org. Available at:
https://schema.org/ (Accessed: 03 October 2024). - Sefton, P., Carragáin, E.Ó., Soiland-Reyes, S., Corcho, O., Garijo, D., Palma, R., Coppens, F. et al. (2023) RO-Crate Metadata Specification 1.1.3, Zenodo.
- Soiland-Reyes, S., Sefton, P., Crosas, M., Castro, L., Coppens, F., Fernández, J., Garijo, D. et al. (2022) ‘Packaging research artefacts with RO-Crate’, DS, 5, pp. 97–138. Available at: 10.3233/DS-210053
- Stickdorn, M. and Schneider, J. (2012) This is Service Design Thinking: Basics, Tools, Cases. Wiley.
- The MatWerk Ontology (MWO) (2024) The MatWerk Ontology (MWO). Available at:
http://purls.helmholtz-metadaten.de/mwo (Accessed: 29 May 2024). - Tsybenko, H., Menon, S., Chen, F., Guzman, A., Grünwald, K., Brinckmann, S., Hickel, T. et al. (2023a) Project Data: Elastic properties of EN AW-1050A alloy: a scientific user journey built upon NFDI-MatWerk infrastructure solutions. Available at:
http://hdl.handle.net/21.11102/4781e163-229d-4a2a-91c2-75e107c21730 (Accessed: 29 May 2024). - Tsybenko, H., Menon, S., Chen, F., Guzman, A., Grünwald, K., Brinckmann, S., Hickel, T. et al. (2023b) Project Data: Elastic properties of EN AW-1050A alloy: a scientific user journey built upon NFDI-MatWerk infrastructure solutions. Available at:
https://git.rwth-aachen.de/nfdi-matwerk/ta-wsd1/user-journey-indentation (Accessed: 17 October 2024). - van der Walt, S., Schönberger, J., Nunez-Iglesias, J., Boulogne, F., Warner, J., Yager, N., Gouillart, E. et al. (2014) ‘scikit-image: image processing in Python’, PeerJ, 2, p.
e453 . Available at: 10.7717/peerj.453 - Wilkinson, M., Dumontier, M., Aalbersberg, I., Appleton, G., Axton, M., Baak, A., Blomberg, N. et al. (2016) ‘The FAIR Guiding Principles for scientific data management and stewardship’, Scientific Data, 3, p.
160018 . Available at: 10.1038/sdata.2016.18 - Wilkinson, S.R., Eisenhauer, G., Kapadia, A., Knight, K., Logan, J., Widener, P. and Wolf, M. (2022) ‘F*** workflows: when parts of FAIR are missing’, in 2022 IEEE 18th International Conference on e-Science (e-Science), Salt Lake City, UT, USA, pp. 507–512. Available at: 10.1109/eScience55777.2022.00090
