Have a personal or library account? Click to login
Evaluating COVID-19 Information and Risk-Averse Behaviours: Insights from Conjoint and Clustering Analyses in the UK, Japan, and Taiwan Cover

Evaluating COVID-19 Information and Risk-Averse Behaviours: Insights from Conjoint and Clustering Analyses in the UK, Japan, and Taiwan

Open Access
|Aug 2025

References

  1. 1Ahteensuu, M. (2012) ‘Assumptions of the deficit model type of thinking: ignorance, attitudes, and science communication in the debate on genetic engineering in agriculture’, Journal of Agricultural and Environmental Ethics, 25(3), pp. 295313. Available at: 10.1007/s10806-011-9311-9
  2. 2Auspurg, K. and Hinz, T. (2014) Factorial survey experiments (Vol. 175). Sage Publications. Available at: 10.4135/9781483398075
  3. 3Bergeot, J. and Jusot, F. (2024) ‘Risk, time preferences, trustworthiness and COVID-19 preventive behavior: evidence from France’, European Journal of Health Economics: HEPAC: Health Economics in Prevention and Care, 25(1), pp. 91101. Available at: 10.1007/s10198-023-01573-y
  4. 4Bruine de Bruin, W. and Bennett, D. (2020) ‘Relationships between initial COVID-19 risk perceptions and protective health behaviors: A national survey’, American Journal of Preventive Medicine, 59(2), pp. 157167. Available at: 10.1016/j.amepre.2020.05.001
  5. 5Cori, L. et al. (2020) ‘Risk perception and COVID-19’, International Journal of Environmental Research and Public Health, 17(9), p. 3114. Available at: 10.3390/ijerph17093114
  6. 6Dai, Y. et al. (2022) ‘The paradoxical effects of institutional trust on risk perception and risk management in the Covid-19 pandemic: Evidence from three societies’, Journal of Risk Research, 25(11–12), pp. 13371355. Available at: 10.1080/13669877.2022.2108122
  7. 7Desarbo, W.S. et al. (1992) ‘Latent class metric conjoint analysis’, Marketing Letters, 3(3), pp. 273288. Available at: 10.1007/BF00994135
  8. 8Dryhurst, S. et al. (2020) ‘Risk perceptions of COVID-19 around the world’, in COVID-19. Routledge, pp. 162174.
  9. 9European Union. (2001) Eurobarometer 55.2: Europeans, science and technology. European Commission. Available at: https://ec.europa.eu/research/press/2001/pr0612en-report.pdf (Accessed: 23 January 2019).
  10. 10Finucane, M.L. et al. (2002) ‘Aging and decision-making competence: an analysis of comprehension and consistency skills in older versus younger adults considering health-plan options’, Journal of Behavioral Decision Making, 15(2), pp. 141164. Available at: 10.1002/bdm.407
  11. 11Gao, S. et al. (2020) ‘Association of mobile phone location data indications of travel and stay-at-home mandates with COVID-19 infection rates in the US’, JAMA Network Open, 3(9), e2020485. Available at: 10.1001/jamanetworkopen.2020.20485
  12. 12Gensler, S. (2021) ‘Finite mixture models’, in C. Homburg, M. Klarmann and A. Vomberg (eds.) Handbook of market research. Springer International Publishing, pp. 251264. Available at: 10.1007/978-3-319-57413-4_12
  13. 13Hisam, M.W. et al. (2024) ‘The versatility of the Taguchi method: Optimizing experiments across diverse disciplines’, Journal of Statistical Theory and Applications, 23(4), pp. 365389. Available at: 10.1007/s44199-024-00093-9
  14. 14Igarashi, A., Nakano, Y. and Yoneyama-Hirozane, M. (2022) ‘Public preferences and willingness to accept a hypothetical vaccine to prevent a pandemic in Japan: A conjoint analysis’, Expert Review of Vaccines, 21(2), pp. 241248. Available at: 10.1080/14760584.2022.2016402
  15. 15Im, J., Kim, J. and Choeh, J. Y. (2021) ‘COVID-19, social distancing, and risk-averse actions of hospitality and tourism consumers: A case of South Korea’, Journal of Destination Marketing and Management, 20, 100566. Available at: 10.1016/j.jdmm.2021.100566
  16. 16Inagaki, Y. et al. (2021) ‘Investigation of the actual condition and countermeasures of inappropriate responses to web surveys using latent rank analysis’, Sociological Theory and Methods, 36(2), pp. 132148.
  17. 17Ito, K., Kanemitsu, S., Kimura, R. and Omori, R. (2022) ‘Future behaviors decision-making regarding travel avoidance during COVID-19 outbreaks’, Scientific Reports, 12(1), p. 19780. Available at: 10.1038/s41598-022-24323-1
  18. 18Kacker, R.N., Lagergren, E.S. and Filliben, J.J. (1991) ‘Taguchi’s orthogonal arrays are classical designs of experiments’, Journal of Research of the National Institute of Standards and Technology, 96(5), pp. 577591. Available at: 10.6028/jres.096.034
  19. 19Kato-Nitta, N., Maeda, T., Inagaki, Y. and Tachikawa, M. (2019) ‘Expert and public perceptions of gene-edited crops: Attitude changes in relation to scientific knowledge’, Palgrave Communications, 5(1), p. 137. Available at: 10.1057/s41599-019-0328-4
  20. 20Kato-Nitta, N., Tachikawa, M., Inagaki, Y. and Maeda, T. (2023) ‘Public perceptions of risks and benefits of gene-edited food crops: An international comparative study between the US, Japan, and Germany’, Science, Technology, & Human Values, 48(6), pp. 13601392. Available at: 10.1177/01622439221123830
  21. 21Kotler, P.T. and Keller, K.L. (2012) Marketing management. Pearson.
  22. 22Krosnick, J.A. (1991) ‘Response strategies for coping with the cognitive demands of attitude measures in surveys’, Applied Cognitive Psychology, 5(3), pp. 213236. Available at: 10.1002/acp.2350050305
  23. 23Lobb, A. (2005) ‘Consumer trust, risk and food safety: A review’, Food Economics – Acta Agriculturae Scandinavica, Section C, 2(1), pp. 312. Available at: 10.1080/16507540510033424
  24. 24Louviere, J.J. (1988) Analyzing decision making: metric conjoint analysis. Sage Publications. Available at: 10.4135/9781412983365
  25. 25Maniaci, M.R. and Rogge, R.D. (2014) ‘Conducting research on the Internet’, in H.T. Reis and C.M. Judd (eds.) Handbook of research methods in social and personality psychology, 2nd ed. New York, Cambridge University Press. pp. 443470. Available at: 10.1017/CBO9780511996481.021
  26. 26Marivate, V. and Combrink, H.M. (2020) ‘Use of Available Data to Inform The COVID-19 Outbreak in South Africa: A Case Study’, Data Science Journal, 19(19), pp. 17. Available at: 10.5334/dsj-2020-019
  27. 27Ministry of Education. (2021/2022) Republic of China (Taiwan). Education in Taiwan. Available at: https://stats.moe.gov.tw/bookcase/Education_in_Taiwan/110/index.html.
  28. 28Mitra, A. (2011) ‘The Taguchi method’, WIREs Computational Statistics, 3(5), pp. 472480. Available at: 10.1002/wics.169
  29. 29Nakadai, K., Kasamaki, K. and Shimofune, T. (2018) ‘Levels of the preventive medicine and the competence measured by health literacy scale in Japan: The literature review’, Health and Behavior Sciences, 16(2), pp. 7393. In Japanese.
  30. 30National Science Board. (2016) Science and engineering indicators 2016. National Science Foundation. Available at: https://www.nsf.gov/statistics/2016/nsb20161/uploads/1/10/tt07-03.pdf (Accessed: 7 August 2018).
  31. 31Okamoto, M. et al. (2012) ‘Health numeracy in Japan: Measures of basic numeracy account for framing bias in a highly numerate population’, BMC Medical Informatics and Decision Making, 12(1), p. 104. Available at: 10.1186/1472-6947-12-104
  32. 32Omori, R. et al. (2024) ‘Human movement avoidance decisions during coronavirus disease 2019 in Japan’, Journal of Theoretical Biology, 585, p. 111795. Available at: 10.1016/j.jtbi.2024.111795
  33. 33Organization for Economic Co-operation and Development. (2021) Adult education level. Available at: https://data.oecd.org/eduatt/adult-education-level.htm.
  34. 34Qin, H. et al. (2021) ‘Exploring the dynamic relationships between risk perception and behavior in response to the coronavirus disease 2019 (COVID-19) outbreak’, Social Science and Medicine, 285, p. 114267. Available at: 10.1016/j.socscimed.2021.114267
  35. 35Rao, V.R. (2014) Applied conjoint analysis. Springer. Available at: 10.1007/978-3-540-87753-0
  36. 36Rayani, M., Rayani, S. and Najafi-Sharjabad, F. (2021) ‘COVID-19-related knowledge, risk perception, information seeking, and adherence to preventive behaviors among undergraduate students, southern Iran’, Environmental Science and Pollution Research International, 28(42), pp. 5995359962. Available at: 10.1007/s11356-021-14934-y
  37. 37Reeskens, T., Roosma, F. and Wanders, E. (2021) ‘The perceived deservingness of COVID-19 healthcare in the Netherlands: A conjoint experiment on priority access to intensive care and vaccination’, BMC Public Health, 21(1), p. 447. Available at: 10.1186/s12889-021-10488-3
  38. 38Schaller, M. and Murray, D.R. (2010) ‘Infectious diseases and the evolution of cross-cultural differences’, Evolution, culture, and the human mind. New York: Psychology Press, pp. 24356.
  39. 39Schneider, C.R. et al. (2021) ‘COVID-19 risk perception: A longitudinal analysis of its predictors and associations with health protective behaviors in the United Kingdom’, Journal of Risk Research, 24(3–4), pp. 294313. Available at: 10.1080/13669877.2021.1890637
  40. 40Simis, M.J. et al. (2016) ‘The lure of rationality: Why does the deficit model persist in science communication?’, Public Understanding of Science, 25(4), pp. 400414. Available at: 10.1177/0963662516629749
  41. 41Slovic, P., Fischhoff, B. and Lichtenstein, S. (1981) ‘Informing the public about the risks from ionizing radiation’, Health Physics, 41(4), pp. 589598. Available at: 10.1097/00004032-198110000-00001
  42. 42Taguchi, G. (1977; 2010) Jikken keikaku hou, 3rd ed. Tokyo, Maruzen: in Japanese.
  43. 43Taguchi, G. (1987) The system of experimental design: engineering methods to optimize quality and minimize costs. White Plains, NY, Quality Resources.
  44. 44Taguchi, G. and Konishi, S. (1959) Chokkouhyouniyoru Jikken-no Waritsukekata. Tokyo, Nikkagiren: in Japanese.
  45. 45Terada, T. (1948) ‘Shou bakuhatsu niken’, in Terada Torahiko Zuihitsu shu. Iwanami Shoten: in Japanese.
  46. 46Tourangeau, R., Conrad, F.G. and Couper, M.P. (2013) The science of web surveys. Oxford University Press. Available at: 10.1093/acprof:oso/9780199747047.001.0001
  47. 47van Doren, T.P. et al. (2024) ‘Risk perception and reappraisal during the COVID-19 pandemic in southeast Alaska: Self-identified determinants of risk and protective health behaviors’, Social Science & Medicine, 361, 117378. Available at: 10.1016/j.socscimed.2024.117378
  48. 48Wang, K. et al. (2023) ‘Loss-framing of information and pre-vaccination consultation improve COVID-19 vaccine acceptance: A survey experiment’, Frontiers in Public Health, 11, 1063444. Available at: 10.3389/fpubh.2023.1063444
  49. 49World Bank. (2023) World Bank country and lending groups. Available at: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (Accessed: 31 March 2023).
  50. 50Yang, K. and El-Haik, B. (2008) ‘Taguchi’s orthogonal array experiment’, in K. Yangand and B. El-Haik (eds.) Design for six sigma: A road map for product development. New York: McGraw-Hill, pp. 469497. Available at: 10.1002/9780470264003
Language: English
Submitted on: Jul 30, 2024
Accepted on: Jun 5, 2025
Published on: Aug 13, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Naoko Kato-Nitta, Yusuke Inagaki, Tadahiko Maeda, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.