Have a personal or library account? Click to login
Time Series Prediction Model of Grey Wolf Optimized Echo State Network Cover

Time Series Prediction Model of Grey Wolf Optimized Echo State Network

Open Access
|May 2019

References

  1. Chandra, R. 2015. Competition and Collaboration in Cooperative Coevolution of Elman Recurrent Neural Networks for Time-Series Prediction. IEEE Transactions on Neural Networks & Learning Systems, 26(12): 3123. DOI: 10.1109/TNNLS.2015.2404823
  2. Chen, C, Twycross, J and Garibaldi, J. 2017. A new accuracy measure based on bounded relative error for time series forecasting. Plos One, 12(3): 123. DOI: 10.1371/journal.pone.0174202
  3. Chouikhi, N, Ammar, B, Rokbani, N and Alimi, AM. 2017. PSO-based analysis of Echo State Network parameters for time series forecasting. Applied Soft Computing, 55: 211225. DOI: 10.1016/j.asoc.2017.01.049
  4. Egrioglu, E, Yolcu, U, Aladag, CH and Bas, E. 2015. Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Neural Processing Letters, 41(2): 249258. DOI: 10.1007/s11063-014-9342-0
  5. Han, M and Mu, DY. 2011. LM algorithm in echo state network for chaotic time series prediction. Control & Decision, 26(10): 14691472.
  6. Huang, MW, Chen, CW, Lin, WC, Ke, SW and Tsai, CF. 2017. SVM and SVM ensembles in breast cancer prediction. Plos One, 12(1): e0161501. DOI: 10.1371/journal.pone.0161501
  7. Jaramillo, J, Velasquez, JD and Franco, CJ. 2017. Research in financial time series forecasting with SVM: Contributions from literature. IEEE Latin America Transactions, 15(1): 145153. DOI: 10.1109/TLA.2017.7827918
  8. Jiang, P, Dong, Q, Li, P and Lian, L. 2017. A novel high-order weighted fuzzy time series model and its application in nonlinear time series prediction. Applied Soft Computing, 55: 4462. DOI: 10.1016/j.asoc.2017.01.043
  9. Li, D, Han, M, Wang, J. 2012. Chaotic time series prediction based on a novel robust echo state network. IEEE Trans Neural Netw Learn Syst, 23(5): 787799. DOI: 10.1109/TNNLS.2012.2188414
  10. Liang, Y, Qiu, L, Zhu, J and Pan, J. 2017. A Digester Temperature Prediction Model Based on the Elman Neural Network. Applied Engineering in Agriculture, 33(2): 142148. DOI: 10.13031/aea.11157
  11. Liu, C, Hoi, SCH, Zhao, P and Sun, J. 2016. Online arima algorithms for time series prediction. In: Thirtieth AAAI Conference on Artificial Intelligence. AAAI Press, 18671873.
  12. Lun, SX, Yao, XS, Qi, HY and Hu, HF. 2015. A novel model of leaky integrator echo state network for time-series prediction. Neurocomputing, 159(1): 5866. DOI: 10.1016/j.neucom.2015.02.029
  13. Misaghi, S and Sheijani, OS. 2017. A hybrid model based on support vector regression and modified harmony search algorithm in time series prediction. In: 2017 5th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). IEEE, 5460. DOI: 10.1109/CFIS.2017.8003657
  14. Nieto, PJG, García-Gonzalo, E, Fernández, JRA and Muñiz, CD. 2017. A hybrid wavelet kernel SVM-based method using artificial bee colony algorithm for predicting the cyanotoxin content from experimental cyanobacteria concentrations in the Trasona reservoir (Northern Spain). Journal of Computational & Applied Mathematics, 309(1): 587602. DOI: 10.1016/j.cam.2016.01.045
  15. Qiao, J, Li, R, Chai, W and Han, HJ. 2016. Prediction of BOD based on PSO-ESN neural network. Control Engineering, 23(4): 463467. DOI: 10.15407/fm23.03.463
  16. Qin, Y, Song, D, Chen, H, Cheng, W, Jiang, G and Cottrell, GJ. 2017. A dual-stage attention-based recurrent neural network for time series prediction. International Joint Conferences on Artificial Intelligence Organization, 26272633. DOI: 10.24963/ijcai.2017/366
  17. Ren, T, Liu, S, Yan, G and Mu, HJ. 2016. Temperature prediction of the molten salt collector tube using BP neural network. IET Renewable Power Generation, 10(2): 212220. DOI: 10.1049/iet-rpg.2015.0065
  18. Rezaei, H, Bozorg-Haddad, O and Chu, X. 2018. Grey Wolf Optimization (GWO) Algorithm. In Advanced Optimization by Nature-Inspired Algorithms. Springer. 8191. DOI: 10.1007/978-981-10-5221-7_9
  19. Rojas, I and Pomares, H. 2016. Time Series Analysis and Forecasting. Contributions to Statistics, 43(5): 175197. DOI: 10.1007/978-3-319-28725-6
  20. Sacchi, R, Ozturk, MC, Principe, JC and Carneiro, AAFM. 2007. Water Inflow Forecasting using the Echo State Network: a Brazilian Case Study. In: International Joint Conference on Neural Networks. DOI: 10.1109/IJCNN.2007.4371334
  21. Saremi, S, Mirjalili, SZ, Mirjalili, SM. 2015. Evolutionary population dynamics and grey wolf optimizer. Neural Computing and Applications, 26(5): 12571263. DOI: 10.1007/s00521-014-1806-7
  22. Wen, L, Liang, XM, Long, ZQ, Qin, HY. 2012. RBF neural network time series forecasting based on hybrid evolutionary algorithm. Control & Decision, 27(8): 12651268+1272.
  23. Xiao, Q, Chu, C, Zhao, L. 2017. Time series prediction using dynamic Bayesian network. Optik International Journal for Light and Electron Optics, 135: 98103. DOI: 10.1016/j.ijleo.2017.01.073
  24. Yaseen, ZM, Allawi, MF, Yousif, AA, Jaafar, O, Hamzah, FM, El-Shafie, A. 2016. Non-tuned machine learning approach for hydrological time series forecasting. Neural Computing & Applications, 113.
  25. Zhai, J and Cao, J. 2016. The combined prediction model based on time series ARIMA and BP neural network. Statistics and Decision, 3(4): 2932.
  26. Zhang, Y, Yu, D, Seltzer, ML and Droppo, J. 2015. Speech recognition with prediction-adaptation-correction recurrent neural networks. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 50045008. DOI: 10.1109/ICASSP.2015.7178923
  27. Zhong, S, Xie, X, Lin, L and Wang, F. 2017. Genetic algorithm optimized double-reservoir echo state network for multi-regime time series prediction. Neurocomputing, 238: 191204. DOI: 10.1016/j.neucom.2017.01.053
Language: English
Submitted on: May 12, 2018
|
Accepted on: Apr 3, 2019
|
Published on: May 7, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Huiqing Wang, Yingying Bai, Chun Li, Zhirong Guo, Jianhui Zhang, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.