References
- 1Ajayebi, A., Hopkinson, P., Zhou, K., Lam, D., Chen, H. M., & Wang, Y. (2020). Spatiotemporal model to quantify stocks of building structural products for a prospective circular economy. Resources, Conservation and Recycling, 162,
105026 . 10.1016/J.RESCONREC.2020.105026 - 2Alaux, N. (2025).
Identification of future trajectories for carbon budget-compliant buildings: An Austrian perspective (Doctoral thesis, Graz University of Technology). 10.3217/kxr2n-15a73 - 3Alaux, N., Marton, C., Steinmann, J., Maierhofer, D., Mastrucci, A., Petrou, D., Potrč Obrecht, T., Ramon, D., Le Den, X., Allacker, K., Passer, A., & Röck, M. (2024). Whole-life greenhouse gas emission reduction and removal strategies for buildings: Impacts and diffusion potentials across EU Member States. Journal of Environmental Management, 370,
122915 . 10.1016/J.JENVMAN.2024.122915 - 4Alaux, N., Schwark, B., Hörmann, M., Ruschi Mendes Saade, M., & Passer, A. (2024). Assessing the prospective environmental impacts and circularity potentials of building stocks: An open-source model from Austria (PULSE-AT). Journal of Industrial Ecology, 28(6), 1435–1448. 10.1111/jiec.13558
- 5Al-Najjar, A., Malmqvist, T., Stenberg, E., & Höjer, M. (2025). Stock, flow and reuse potential of precast concrete in Swedish residential buildings: Embodied carbon assessment. Resources, Conservation and Recycling, 218,
108229 . 10.1016/J.RESCONREC.2025.108229 - 6Arora, M., Raspall, F., Cheah, L., & Silva, A. (2019). Residential building material stocks and component-level circularity: The case of Singapore. Journal of Cleaner Production, 216, 239–248. 10.1016/J.JCLEPRO.2019.01.199
- 7Assefa, G., & Ambler, C. (2017). To demolish or not to demolish: Life cycle consideration of repurposing buildings. Sustainable Cities and Society, 28, 146–153. 10.1016/j.scs.2016.09.011
- 8Augiseau, V., & Kim, E. (2021). Spatial characterization of construction material stocks: The case of the Paris region. Resources, Conservation and Recycling, 170,
105512 . 10.1016/J.RESCONREC.2021.105512 - 9Baumstark, L., Bauer, N., Benke, F., Bertram, C., Bi, S., Chris Gong, C., Philipp Dietrich, J., Dirnaichner, A., Giannousakis, A., Hilaire, J., Klein, D., Koch, J., Leimbach, M., Levesque, A., Madeddu, S., Malik, A., Merfort, L., Odenweller, A., Pehl, M., … Luderer, G. (2021). REMIND2.1: Transformation and innovation dynamics of the energy-economic system within climate and sustainability limits. Geoscientific Model Development Discussions, 14(10), 6571–6603. 10.5194/gmd-14-6571-2021
- 10Bischof, J., & Duffy, A. (2022). Life-cycle assessment of non-domestic building stocks: A meta-analysis of current modelling methods. Renewable and Sustainable Energy Reviews, 153,
111743 . 10.1016/J.RSER.2021.111743 - 11BMK. (2023). Bundes-Abfallwirtschaftsplan 2023. Teil 1.
https://www.bmk.gv.at/dam/jcr:07c02028-7839-4ab9-8587-76bc1e42f679/Bundes-Abfallwirtschaftsplan_2023_Teil1.pdf - 12CEN. (2024). prEN15978:2024: Sustainability of construction works – Assessment of environmental performance of buildings – Requirements and guidance (draft).
https://www.din.de/de/mitwirken/normenausschuesse/nabau/entwuerfe/wdc-beuth:din21:379352849 - 13Council of the European Union. (2008). Directive 2008/98/EC on waste and repealing certain directives.
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02008L0098-20180705 - 14Dai, M., Jurszyk, J., Gillott, C., Sun, K., Lanau, M., Liu, G., & Densley Tingley, D. (2025). Modeling interior component stocks of UK housing using exterior features and machine learning techniques. Journal of Industrial Ecology, 29(4), 1293–1309. 10.1111/JIEC.70048
- 15Dworak, S., Fellner, J., Beermann, M., Häuselmann, M., Schenk, J., Michelic, S., Cejka, J., Sakic, A., Mayer, J., & Steininger, K. (2022). Stahlrecycling – Potenziale und Herausforderungen für innovatives und nachhaltiges Recycling. Österreichische Wasser- Und Abfallwirtschaft, 75(1), 97–107. 10.1007/S00506-022-00903-3
- 16Eberhardt, L., & Birgisdottir, H. (2022). Building the future using the existing building stock: the environmental potential of reuse. IOP Conference Series: Earth and Environmental Science, 1078(1),
012020 . 10.1088/1755-1315/1078/1/012020 - 17Ellen MacArthur Foundation. (2019). Circular economy systems diagram.
www.ellenmacarthurfoundation.org/circular-economy-diagram - 18European Commission. (2022). European Platform on LCA – EF reference package 3.1.
https://eplca.jrc.ec.europa.eu/LCDN/developerEF.html - 19European Commission, Trinomics, VITO, Wageningen University, Technische Universität Graz, & Ricardo. (2021). Evaluation of the climate benefits of the use of harvested wood products in the construction sector and assessment of remuneration schemes – Final report. Publications Office of the European Union.
https://data.europa.eu/doi/10.2834/421958 - 20European Parliament. (2024). Directive (EU) 2024/1275 of the European Parliament and of the Council of 24 April 2024 on the energy performance of buildings (recast).
https://eur-lex.europa.eu/eli/dir/2024/1275/oj/eng - 21Giebeler, G., Fisch, R., Krause, H., Musso, F., Petzinka, K.-H., & Rudolphi, A. (2008).
Atlas Sanierung. Instandhaltung, Ergänzung, Umbau . In Atlas Sanierung. De Gruyter. 10.11129/DETAIL.9783034614344 - 22Heeren, N., & Hellweg, S. (2019). Tracking construction material over space and time: Prospective and geo-referenced modeling of building stocks and construction material flows. Journal of Industrial Ecology, 23(1), 253–267. 10.1111/JIEC.12739
- 23Heeren, N., Jakob, M., Martius, G., Gross, N., & Wallbaum, H. (2013). A component based bottom-up building stock model for comprehensive environmental impact assessment and target control. Renewable and Sustainable Energy Reviews, 20, 45–56. 10.1016/J.RSER.2012.11.064
- 24Hegger, M., Auch-Schwelk, V., Fuchs, M., & Rosenkranz, T. (2005). Baustoff Atlas (Vol. 1). Birkhäuser.
- 25Hertwich, E. G., Ali, S., Ciacci, L., Fishman, T., Heeren, N., Masanet, E., Asghari, F. N., Olivetti, E., Pauliuk, S., Tu, Q., & Wolfram, P. (2019). Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environmental Research Letters, 14(4),
043004 . 10.1088/1748-9326/AB0FE3 - 26Hossain, Md. U., & Ng, S. T. (2019). Influence of waste materials on buildings’ life cycle environmental impacts: Adopting resource recovery principle. Resources, Conservation and Recycling, 142, 10–23. 10.1016/j.resconrec.2018.11.010
- 27Hosseini, M. R., Ahmadi, M., Helal, J., Candido, C., Arashpour, M., Wang, J., & Forcada Matheu, N. (2025). Environmental impact assessment of refurbishment versus new construction: A multi-category life cycle analysis of building projects. Journal of Building Engineering, 112,
113825 . 10.1016/J.JOBE.2025.113825 - 28Hoxha, E., & Birgisdottir, H. (2025). Recycling and reusing a robust solution, or a utopia for lowering the greenhouse gas emissions of buildings? The case of Denmark. The International Journal of Life Cycle Assessment 2025, 1–13. 10.1007/S11367-025-02507-X
- 29Hoxha, E., & Jusselme, T. (2017). On the necessity of improving the environmental impacts of furniture and appliances in net-zero energy buildings. Science of the Total Environment, 596–597, 405–416. 10.1016/J.SCITOTENV.2017.03.107
- 30IBO. (2018). Passivhaus-Bauteilkatalog: Sanierung.
Österreichisches Institut für Bauen und Ökologie .https://www.ibo.at/forschung/referenzprojekte/data/passivhaus-sanierungsbauteilkatalog - 31Kalt, G. (2018). Carbon dynamics and GHG implications of increasing wood construction: long-term scenarios for residential buildings in Austria. Carbon Management, 9(3), 265–275. 10.1080/17583004.2018.1469948
- 32Karlsson, I., Rootzén, J., Johnsson, F., & Erlandsson, M. (2021). Achieving net-zero carbon emissions in construction supply chains – A multidimensional analysis of residential building systems. Developments in the Built Environment, 8,
100059 . 10.1016/J.DIBE.2021.100059 - 33Knap-Rieger, S., Rettensteiner, G., Rosegger, R., Steinbichler, R., & Winkler, F. (2022). Sudie Grazer Wohnbau 2021 – Bericht.
https://www.graz.at/cms/dokumente/10404157_10621891/239aa4c2/Studie%20Grazer%20Wohnbau%202021_Bericht_final_web.pdf - 34Kolkwitz, M. (2025). Material stocks and flows embedded in residential buildings: A spatially explicit and temporally dynamic bottom-up study of Vantaa, Finland. Resources, Conservation and Recycling, 215,
108157 . 10.1016/J.RESCONREC.2025.108157 - 35Kretzschmar, D., & Schiller, G. (2023). Non-domestic building stock: linking dynamics and spatial distributions. Buildings and Cities, 4(1), 727–748. 10.5334/BC.357
- 36Kulmer, V., Wallenko, L., Sanvito, F., Alaux, N., Salomon, M., & Nabernegg, S. (2024). Exploring macroeconomic and distributional effects of future net-zero energy configurations: A case study of Austria. 2024 Annual Conference of Nationalökonomische Gesellschaft (NOeG).
- 37Li, J., Lützkendorf, T., Balouktsi, M., Bi, X., Alaux, N., Potrč Obrecht, T., Passer, A., Han, C., & Yang, W. (2023). Identifying uncertainties in the whole life carbon assessment of buildings: Sources, types, and potential actions. Building and Environment, 244,
110779 . 10.1016/J.BUILDENV.2023.110779 - 38Liang, H., Bian, X., Dong, L., Shen, W., Chen, S. S., & Wang, Q. (2023). Mapping the evolution of building material stocks in three eastern coastal urban agglomerations of China. Resources, Conservation and Recycling, 188,
106651 . 10.1016/J.RESCONREC.2022.106651 - 39Llana, D. F., González-Alegre, V., Portela, M., & Íñiguez-González, G. (2022). Cross laminated timber (CLT) manufactured with European oak recovered from demolition: Structural properties and non-destructive evaluation. Construction and Building Materials, 339,
127635 . 10.1016/J.CONBUILDMAT.2022.127635 - 40Loga, T., Stein, B., & Diefenbach, N. (2016). TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable. Energy and Buildings, 132, 4–12. 10.1016/J.ENBUILD.2016.06.094
- 41Ma, M., Zhang, S., Liu, J., Yan, R., Cai, W., Zhou, N., & Yan, J. (2025). Building floorspace and stock measurement: A review of global efforts, knowledge gaps, and research priorities. Nexus, 2(3),
100075 . 10.1016/J.YNEXS.2025.100075 - 42Metabolic. (2022). Modelling the renovation of buildings in Europe from a circular economy and climate perspective.
https://www.eea.europa.eu/publications/building-renovation-where-circular-economy/modelling-the-renovation-of-buildings/view - 43Milojevic-Dupont, N., Wagner, F., Nachtigall, F., Hu, J., Brüser, G. B., Zumwald, M., Biljecki, F., Heeren, N., Kaack, L. H., Pichler, P. P., & Creutzig, F. (2023). EUBUCCO v0.1: European building stock characteristics in a common and open database for 200+ million individual buildings. Scientific Data, 10(1), 1–17. 10.1038/s41597-023-02040-2
- 44Monteiro, H., Fernández, J. E., & Freire, F. (2016). Comparative life-cycle energy analysis of a new and an existing house: The significance of occupant’s habits, building systems and embodied energy. Sustainable Cities and Society, 26, 507–518. 10.1016/j.scs.2016.06.002
- 45Mutel, C. (2017). Brightway: An open source framework for life cycle assessment. The Journal of Open Source Software, 2(12),
236 . 10.21105/joss.00236 - 46Nußholz, J., Çetin, S., Eberhardt, L., De Wolf, C., & Bocken, N. (2023). From circular strategies to actions: 65 European circular building cases and their decarbonisation potential. Resources, Conservation & Recycling Advances, 17,
200130 . 10.1016/J.RCRADV.2023.200130 - 47OECD. (2022). HM1.1. Housing stock and construction.
https://www.oecd.org/els/family/HM1-1-Housing-stock-and-construction.pdf - 48OIB. (2020). OIB richtlinie 6: Energieeinsparung und Wärmeschutz. Langfristige Renovierungsstrategie. OIB-330.6-022/19-093.
https://www.oib.or.at/wp-content/uploads/richtlinien/richtlinie_2023/oib-rl_6_langfristige-renovierungsstrategie.pdf - 49Papamichael, I., Voukkali, I., Loizia, P., & Zorpas, A. A. (2023). Construction and demolition waste framework of circular economy: A mini review. Waste Management and Research, 41(12), 1728–1740. 10.1177/0734242X231190804
- 50Pedreño-Rojas, M. A., Flores-Colen, I., De Brito, J., & Rodríguez-Liñán, C. (2019). Influence of the heating process on the use of gypsum wastes in plasters: Mechanical, thermal and environmental analysis. Journal of Cleaner Production, 215, 444–457. 10.1016/J.JCLEPRO.2019.01.053
- 51Pedreño-Rojas, M. A., Fořt, J., Černý, R., & Rubio-de-Hita, P. (2020). Life cycle assessment of natural and recycled gypsum production in the Spanish context. Journal of Cleaner Production, 253,
120056 . 10.1016/J.JCLEPRO.2020.120056 - 52Risse, M., Weber-Blaschke, G., & Richter, K. (2019). Eco-efficiency analysis of recycling recovered solid wood from construction into laminated timber products. Science of the Total Environment, 661, 107–119. 10.1016/J.SCITOTENV.2019.01.117
- 53Röck, M., Baldereschi, E., Verellen, E., Passer, A., Sala, S., & Allacker, K. (2021). Environmental modelling of building stocks – An integrated review of life cycle-based assessment models to support EU policy making. Renewable and Sustainable Energy Reviews, 151,
111550 . 10.1016/J.RSER.2021.111550 - 54Röck, M., Passer, A., & Allacker, K. (2024). SLiCE: An open building data model for scalable high-definition life cycle engineering, environmental hotspot analysis and dynamic impact assessment. Sustainable Production and Consumption. 10.1016/J.SPC.2024.01.005
- 55Röck, M., Saade, M. R. M., Balouktsi, M., Rasmussen, F. N., Birgisdottir, H., Frischknecht, R., Habert, G., Lützkendorf, T., & Passer, A. (2020). Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. Applied Energy, 258,
114107 . 10.1016/j.apenergy.2019.114107 - 56Saade, M. R. M., Guest, G., & Amor, B. (2020). Comparative whole building LCAs: How far are our expectations from the documented evidence? Building and Environment, 167,
106449 . 10.1016/j.buildenv.2019.106449 - 57Sacchi, R., Terlouw, T., Siala, K., Dirnaichner, A., Bauer, C., Cox, B., Mutel, C., Daioglou, V., & Luderer, G. (2022). PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models. Renewable and Sustainable Energy Reviews, 160,
112311 . 10.1016/J.RSER.2022.112311 - 58Schiavina, M., Melchiorri, M., Corbane, C., Freire, S., & Batista e Silva, F. (2022). Built-up areas are expanding faster than population growth: regional patterns and trajectories in Europe. Journal of Land Use Science, 17(1), 591–608. 10.1080/1747423X.2022.2055184
- 59Schmid, C., Kastner, F., Zhang, D., Langenberg, S., & Hellweg, S. (2025). Spatiotemporal mapping of Swiss exterior wall material stock using a large language model and architectural history. Journal of Industrial Ecology. 10.1111/JIEC.70058
- 60Scholz, W., Möhring, R., Knoblauch, H., Hiese, W., Engelhardt, I., Bruckner, H., Grohmann, R., Metje, W.-R., Pützschler, W., Rogosch, N., Schmidt, D., Schneider, U., & Thielmann, T. (2016). Baustoffkenntnis. Bundesanzeiger.
- 61Shoubi, M. V., Shoubi, M. V., Bagchi, A., & Barough, A. S. (2015). Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches. Ain Shams Engineering Journal, 6(1), 41–55. 10.1016/j.asej.2014.09.006
- 62Slavkovic, K., & Stephan, A. (2025). Dynamic life cycle assessment of buildings and building stocks – A review. Renewable and Sustainable Energy Reviews, 212,
115262 . 10.1016/J.RSER.2024.115262 - 63Slavkovic, K., Stephan, A., & Mulders, G. (2022). A parametric approach to defining archetypes for an integrated material stocks and flows analysis and life cycle assessment of built stocks. 55th International Conference of the Architectural Science Association.
https://archscience.org/paper/a-parametric-approach-to-defining-archetypes-for-an-integrated-material-stocks-and-flows-analysis-and-life-cycle-assessment-of-built-stocks/ - 64Sousa, V., Bogas, J. A., Real, S., Meireles, I., & Carriço, A. (2023). Recycled cement production energy consumption optimization. Sustainable Chemistry and Pharmacy, 32,
101010 . 10.1016/J.SCP.2023.101010 - 65Statistik Austria. (2024a). Bevölkerungsprognose 2024 (gerundete Ergebnisse). Erstellt am 27.11.2024. – Bevölkerung im Jahresdurchschnitt.
https://www.statistik.at/statistiken/bevoelkerung-und-soziales/bevoelkerung/demographische-prognosen/bevoelkerungsprognosen-fuer-oesterreich-und-die-bundeslaender - 66Statistik Austria. (2024b). STATcube: Gebäude- und Wohnungszählung – Gebäude – Zeitreihe ab 2011.
https://www.statistik.at/statistiken/bevoelkerung-und-soziales/wohnen/gebaeudebestand - 67Steininger, K. (2022). Projektüberblick zu Projektbeginn, Austria’s path to climate neutrality: identifying a cross-sector integrated framework and incentive design, distributional and budgetary implications.
https://wegcwp.uni-graz.at/integrate/ - 68Stephan, A. (2022). Digital models for life-cycle assessment and material-flow analysis of urban built stocks. Lieuxdits, 21, 20–25. 10.14428/LD.VI21.67213
- 69Swisspor. (2023). EPS R100% Recyclé.
https://www.swisspor.com/ch-fr/eps-r100-recycle?redirect=true - 70Taskhiri, M. S., Jeswani, H., Geldermann, J., & Azapagic, A. (2019). Optimising cascaded utilisation of wood resources considering economic and environmental aspects. Computers & Chemical Engineering, 124, 302–316. 10.1016/J.COMPCHEMENG.2019.01.004
- 71Vogel, J., Alaux, N., Hoff, H., & Wallenko, L. (2025). Policies for the transition to a climate-neutral circular economy: A spotlight on innovation in Austrian industry.
https://www.umweltbundesamt.at/fileadmin/site/publikationen/rep0965.pdf - 72VÖZ. (2022). Roadmap zur CO2-Neutralität der österreichischen Zementindustrie bis 2050.
https://zement.at/publikationen/co2-roadmap/ - 73Weikert, W. (2024). Filling the gap in building age data coverage with ML and widely available GIS data (Master’s thesis, RWTH Aachen).
- 74Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 1218–1230. 10.1007/s11367-016-1087-8
- 75WKO. (2019). Im Wettbewerb um die Zukunft – Klimapolitische Perspektiven für den Beitrag der österreichischen Industrie zur Treibhausgasneutralität. WKO.
- 76Wuyts, W., Miatto, A., Khumvongsa, K., Guo, J., Aalto, P., & Huang, L. (2022). How can material stock studies assist the implementation of the circular economy in cities? Environmental Science and Technology, 56(24), 17523–17530. 10.1021/ACS.EST.2C05275
- 77Yang, X., Hu, M., Zhang, C., & Steubing, B. (2022). Urban mining potential to reduce primary material use and carbon emissions in the Dutch residential building sector. Resources, Conservation and Recycling, 180,
106215 . 10.1016/J.RESCONREC.2022.106215 - 78Yang, Y., Guan, J., Nwaogu, J. M., Chan, A. P. C., Chi, H. lin, & Luk, C. W. H. (2022). Attaining higher levels of circularity in construction: Scientometric review and cross-industry exploration. Journal of Cleaner Production, 375,
133934 . 10.1016/J.JCLEPRO.2022.133934
