Have a personal or library account? Click to login
Preserving buildings: emission reductions from circular economy strategies in Austria Cover

Preserving buildings: emission reductions from circular economy strategies in Austria

Open Access
|Nov 2025

References

  1. 1Ajayebi, A., Hopkinson, P., Zhou, K., Lam, D., Chen, H. M., & Wang, Y. (2020). Spatiotemporal model to quantify stocks of building structural products for a prospective circular economy. Resources, Conservation and Recycling, 162, 105026. 10.1016/J.RESCONREC.2020.105026
  2. 2Alaux, N. (2025). Identification of future trajectories for carbon budget-compliant buildings: An Austrian perspective (Doctoral thesis, Graz University of Technology). 10.3217/kxr2n-15a73
  3. 3Alaux, N., Marton, C., Steinmann, J., Maierhofer, D., Mastrucci, A., Petrou, D., Potrč Obrecht, T., Ramon, D., Le Den, X., Allacker, K., Passer, A., & Röck, M. (2024). Whole-life greenhouse gas emission reduction and removal strategies for buildings: Impacts and diffusion potentials across EU Member States. Journal of Environmental Management, 370, 122915. 10.1016/J.JENVMAN.2024.122915
  4. 4Alaux, N., Schwark, B., Hörmann, M., Ruschi Mendes Saade, M., & Passer, A. (2024). Assessing the prospective environmental impacts and circularity potentials of building stocks: An open-source model from Austria (PULSE-AT). Journal of Industrial Ecology, 28(6), 14351448. 10.1111/jiec.13558
  5. 5Al-Najjar, A., Malmqvist, T., Stenberg, E., & Höjer, M. (2025). Stock, flow and reuse potential of precast concrete in Swedish residential buildings: Embodied carbon assessment. Resources, Conservation and Recycling, 218, 108229. 10.1016/J.RESCONREC.2025.108229
  6. 6Arora, M., Raspall, F., Cheah, L., & Silva, A. (2019). Residential building material stocks and component-level circularity: The case of Singapore. Journal of Cleaner Production, 216, 239248. 10.1016/J.JCLEPRO.2019.01.199
  7. 7Assefa, G., & Ambler, C. (2017). To demolish or not to demolish: Life cycle consideration of repurposing buildings. Sustainable Cities and Society, 28, 146153. 10.1016/j.scs.2016.09.011
  8. 8Augiseau, V., & Kim, E. (2021). Spatial characterization of construction material stocks: The case of the Paris region. Resources, Conservation and Recycling, 170, 105512. 10.1016/J.RESCONREC.2021.105512
  9. 9Baumstark, L., Bauer, N., Benke, F., Bertram, C., Bi, S., Chris Gong, C., Philipp Dietrich, J., Dirnaichner, A., Giannousakis, A., Hilaire, J., Klein, D., Koch, J., Leimbach, M., Levesque, A., Madeddu, S., Malik, A., Merfort, L., Odenweller, A., Pehl, M., … Luderer, G. (2021). REMIND2.1: Transformation and innovation dynamics of the energy-economic system within climate and sustainability limits. Geoscientific Model Development Discussions, 14(10), 65716603. 10.5194/gmd-14-6571-2021
  10. 10Bischof, J., & Duffy, A. (2022). Life-cycle assessment of non-domestic building stocks: A meta-analysis of current modelling methods. Renewable and Sustainable Energy Reviews, 153, 111743. 10.1016/J.RSER.2021.111743
  11. 11BMK. (2023). Bundes-Abfallwirtschaftsplan 2023. Teil 1. https://www.bmk.gv.at/dam/jcr:07c02028-7839-4ab9-8587-76bc1e42f679/Bundes-Abfallwirtschaftsplan_2023_Teil1.pdf
  12. 12CEN. (2024). prEN15978:2024: Sustainability of construction works – Assessment of environmental performance of buildings – Requirements and guidance (draft). https://www.din.de/de/mitwirken/normenausschuesse/nabau/entwuerfe/wdc-beuth:din21:379352849
  13. 13Council of the European Union. (2008). Directive 2008/98/EC on waste and repealing certain directives. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02008L0098-20180705
  14. 14Dai, M., Jurszyk, J., Gillott, C., Sun, K., Lanau, M., Liu, G., & Densley Tingley, D. (2025). Modeling interior component stocks of UK housing using exterior features and machine learning techniques. Journal of Industrial Ecology, 29(4), 12931309. 10.1111/JIEC.70048
  15. 15Dworak, S., Fellner, J., Beermann, M., Häuselmann, M., Schenk, J., Michelic, S., Cejka, J., Sakic, A., Mayer, J., & Steininger, K. (2022). Stahlrecycling – Potenziale und Herausforderungen für innovatives und nachhaltiges Recycling. Österreichische Wasser- Und Abfallwirtschaft, 75(1), 97107. 10.1007/S00506-022-00903-3
  16. 16Eberhardt, L., & Birgisdottir, H. (2022). Building the future using the existing building stock: the environmental potential of reuse. IOP Conference Series: Earth and Environmental Science, 1078(1), 012020. 10.1088/1755-1315/1078/1/012020
  17. 17Ellen MacArthur Foundation. (2019). Circular economy systems diagram. www.ellenmacarthurfoundation.org/circular-economy-diagram
  18. 18European Commission. (2022). European Platform on LCA – EF reference package 3.1. https://eplca.jrc.ec.europa.eu/LCDN/developerEF.html
  19. 19European Commission, Trinomics, VITO, Wageningen University, Technische Universität Graz, & Ricardo. (2021). Evaluation of the climate benefits of the use of harvested wood products in the construction sector and assessment of remuneration schemes – Final report. Publications Office of the European Union. https://data.europa.eu/doi/10.2834/421958
  20. 20European Parliament. (2024). Directive (EU) 2024/1275 of the European Parliament and of the Council of 24 April 2024 on the energy performance of buildings (recast). https://eur-lex.europa.eu/eli/dir/2024/1275/oj/eng
  21. 21Giebeler, G., Fisch, R., Krause, H., Musso, F., Petzinka, K.-H., & Rudolphi, A. (2008). Atlas Sanierung. Instandhaltung, Ergänzung, Umbau. In Atlas Sanierung. De Gruyter. 10.11129/DETAIL.9783034614344
  22. 22Heeren, N., & Hellweg, S. (2019). Tracking construction material over space and time: Prospective and geo-referenced modeling of building stocks and construction material flows. Journal of Industrial Ecology, 23(1), 253267. 10.1111/JIEC.12739
  23. 23Heeren, N., Jakob, M., Martius, G., Gross, N., & Wallbaum, H. (2013). A component based bottom-up building stock model for comprehensive environmental impact assessment and target control. Renewable and Sustainable Energy Reviews, 20, 4556. 10.1016/J.RSER.2012.11.064
  24. 24Hegger, M., Auch-Schwelk, V., Fuchs, M., & Rosenkranz, T. (2005). Baustoff Atlas (Vol. 1). Birkhäuser.
  25. 25Hertwich, E. G., Ali, S., Ciacci, L., Fishman, T., Heeren, N., Masanet, E., Asghari, F. N., Olivetti, E., Pauliuk, S., Tu, Q., & Wolfram, P. (2019). Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environmental Research Letters, 14(4), 043004. 10.1088/1748-9326/AB0FE3
  26. 26Hossain, Md. U., & Ng, S. T. (2019). Influence of waste materials on buildings’ life cycle environmental impacts: Adopting resource recovery principle. Resources, Conservation and Recycling, 142, 1023. 10.1016/j.resconrec.2018.11.010
  27. 27Hosseini, M. R., Ahmadi, M., Helal, J., Candido, C., Arashpour, M., Wang, J., & Forcada Matheu, N. (2025). Environmental impact assessment of refurbishment versus new construction: A multi-category life cycle analysis of building projects. Journal of Building Engineering, 112, 113825. 10.1016/J.JOBE.2025.113825
  28. 28Hoxha, E., & Birgisdottir, H. (2025). Recycling and reusing a robust solution, or a utopia for lowering the greenhouse gas emissions of buildings? The case of Denmark. The International Journal of Life Cycle Assessment 2025, 113. 10.1007/S11367-025-02507-X
  29. 29Hoxha, E., & Jusselme, T. (2017). On the necessity of improving the environmental impacts of furniture and appliances in net-zero energy buildings. Science of the Total Environment, 596597, 405–416. 10.1016/J.SCITOTENV.2017.03.107
  30. 30IBO. (2018). Passivhaus-Bauteilkatalog: Sanierung. Österreichisches Institut für Bauen und Ökologie. https://www.ibo.at/forschung/referenzprojekte/data/passivhaus-sanierungsbauteilkatalog
  31. 31Kalt, G. (2018). Carbon dynamics and GHG implications of increasing wood construction: long-term scenarios for residential buildings in Austria. Carbon Management, 9(3), 265275. 10.1080/17583004.2018.1469948
  32. 32Karlsson, I., Rootzén, J., Johnsson, F., & Erlandsson, M. (2021). Achieving net-zero carbon emissions in construction supply chains – A multidimensional analysis of residential building systems. Developments in the Built Environment, 8, 100059. 10.1016/J.DIBE.2021.100059
  33. 33Knap-Rieger, S., Rettensteiner, G., Rosegger, R., Steinbichler, R., & Winkler, F. (2022). Sudie Grazer Wohnbau 2021 – Bericht. https://www.graz.at/cms/dokumente/10404157_10621891/239aa4c2/Studie%20Grazer%20Wohnbau%202021_Bericht_final_web.pdf
  34. 34Kolkwitz, M. (2025). Material stocks and flows embedded in residential buildings: A spatially explicit and temporally dynamic bottom-up study of Vantaa, Finland. Resources, Conservation and Recycling, 215, 108157. 10.1016/J.RESCONREC.2025.108157
  35. 35Kretzschmar, D., & Schiller, G. (2023). Non-domestic building stock: linking dynamics and spatial distributions. Buildings and Cities, 4(1), 727748. 10.5334/BC.357
  36. 36Kulmer, V., Wallenko, L., Sanvito, F., Alaux, N., Salomon, M., & Nabernegg, S. (2024). Exploring macroeconomic and distributional effects of future net-zero energy configurations: A case study of Austria. 2024 Annual Conference of Nationalökonomische Gesellschaft (NOeG).
  37. 37Li, J., Lützkendorf, T., Balouktsi, M., Bi, X., Alaux, N., Potrč Obrecht, T., Passer, A., Han, C., & Yang, W. (2023). Identifying uncertainties in the whole life carbon assessment of buildings: Sources, types, and potential actions. Building and Environment, 244, 110779. 10.1016/J.BUILDENV.2023.110779
  38. 38Liang, H., Bian, X., Dong, L., Shen, W., Chen, S. S., & Wang, Q. (2023). Mapping the evolution of building material stocks in three eastern coastal urban agglomerations of China. Resources, Conservation and Recycling, 188, 106651. 10.1016/J.RESCONREC.2022.106651
  39. 39Llana, D. F., González-Alegre, V., Portela, M., & Íñiguez-González, G. (2022). Cross laminated timber (CLT) manufactured with European oak recovered from demolition: Structural properties and non-destructive evaluation. Construction and Building Materials, 339, 127635. 10.1016/J.CONBUILDMAT.2022.127635
  40. 40Loga, T., Stein, B., & Diefenbach, N. (2016). TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable. Energy and Buildings, 132, 412. 10.1016/J.ENBUILD.2016.06.094
  41. 41Ma, M., Zhang, S., Liu, J., Yan, R., Cai, W., Zhou, N., & Yan, J. (2025). Building floorspace and stock measurement: A review of global efforts, knowledge gaps, and research priorities. Nexus, 2(3), 100075. 10.1016/J.YNEXS.2025.100075
  42. 42Metabolic. (2022). Modelling the renovation of buildings in Europe from a circular economy and climate perspective. https://www.eea.europa.eu/publications/building-renovation-where-circular-economy/modelling-the-renovation-of-buildings/view
  43. 43Milojevic-Dupont, N., Wagner, F., Nachtigall, F., Hu, J., Brüser, G. B., Zumwald, M., Biljecki, F., Heeren, N., Kaack, L. H., Pichler, P. P., & Creutzig, F. (2023). EUBUCCO v0.1: European building stock characteristics in a common and open database for 200+ million individual buildings. Scientific Data, 10(1), 117. 10.1038/s41597-023-02040-2
  44. 44Monteiro, H., Fernández, J. E., & Freire, F. (2016). Comparative life-cycle energy analysis of a new and an existing house: The significance of occupant’s habits, building systems and embodied energy. Sustainable Cities and Society, 26, 507518. 10.1016/j.scs.2016.06.002
  45. 45Mutel, C. (2017). Brightway: An open source framework for life cycle assessment. The Journal of Open Source Software, 2(12), 236. 10.21105/joss.00236
  46. 46Nußholz, J., Çetin, S., Eberhardt, L., De Wolf, C., & Bocken, N. (2023). From circular strategies to actions: 65 European circular building cases and their decarbonisation potential. Resources, Conservation & Recycling Advances, 17, 200130. 10.1016/J.RCRADV.2023.200130
  47. 47OECD. (2022). HM1.1. Housing stock and construction. https://www.oecd.org/els/family/HM1-1-Housing-stock-and-construction.pdf
  48. 48OIB. (2020). OIB richtlinie 6: Energieeinsparung und Wärmeschutz. Langfristige Renovierungsstrategie. OIB-330.6-022/19-093. https://www.oib.or.at/wp-content/uploads/richtlinien/richtlinie_2023/oib-rl_6_langfristige-renovierungsstrategie.pdf
  49. 49Papamichael, I., Voukkali, I., Loizia, P., & Zorpas, A. A. (2023). Construction and demolition waste framework of circular economy: A mini review. Waste Management and Research, 41(12), 17281740. 10.1177/0734242X231190804
  50. 50Pedreño-Rojas, M. A., Flores-Colen, I., De Brito, J., & Rodríguez-Liñán, C. (2019). Influence of the heating process on the use of gypsum wastes in plasters: Mechanical, thermal and environmental analysis. Journal of Cleaner Production, 215, 444457. 10.1016/J.JCLEPRO.2019.01.053
  51. 51Pedreño-Rojas, M. A., Fořt, J., Černý, R., & Rubio-de-Hita, P. (2020). Life cycle assessment of natural and recycled gypsum production in the Spanish context. Journal of Cleaner Production, 253, 120056. 10.1016/J.JCLEPRO.2020.120056
  52. 52Risse, M., Weber-Blaschke, G., & Richter, K. (2019). Eco-efficiency analysis of recycling recovered solid wood from construction into laminated timber products. Science of the Total Environment, 661, 107119. 10.1016/J.SCITOTENV.2019.01.117
  53. 53Röck, M., Baldereschi, E., Verellen, E., Passer, A., Sala, S., & Allacker, K. (2021). Environmental modelling of building stocks – An integrated review of life cycle-based assessment models to support EU policy making. Renewable and Sustainable Energy Reviews, 151, 111550. 10.1016/J.RSER.2021.111550
  54. 54Röck, M., Passer, A., & Allacker, K. (2024). SLiCE: An open building data model for scalable high-definition life cycle engineering, environmental hotspot analysis and dynamic impact assessment. Sustainable Production and Consumption. 10.1016/J.SPC.2024.01.005
  55. 55Röck, M., Saade, M. R. M., Balouktsi, M., Rasmussen, F. N., Birgisdottir, H., Frischknecht, R., Habert, G., Lützkendorf, T., & Passer, A. (2020). Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. Applied Energy, 258, 114107. 10.1016/j.apenergy.2019.114107
  56. 56Saade, M. R. M., Guest, G., & Amor, B. (2020). Comparative whole building LCAs: How far are our expectations from the documented evidence? Building and Environment, 167, 106449. 10.1016/j.buildenv.2019.106449
  57. 57Sacchi, R., Terlouw, T., Siala, K., Dirnaichner, A., Bauer, C., Cox, B., Mutel, C., Daioglou, V., & Luderer, G. (2022). PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models. Renewable and Sustainable Energy Reviews, 160, 112311. 10.1016/J.RSER.2022.112311
  58. 58Schiavina, M., Melchiorri, M., Corbane, C., Freire, S., & Batista e Silva, F. (2022). Built-up areas are expanding faster than population growth: regional patterns and trajectories in Europe. Journal of Land Use Science, 17(1), 591608. 10.1080/1747423X.2022.2055184
  59. 59Schmid, C., Kastner, F., Zhang, D., Langenberg, S., & Hellweg, S. (2025). Spatiotemporal mapping of Swiss exterior wall material stock using a large language model and architectural history. Journal of Industrial Ecology. 10.1111/JIEC.70058
  60. 60Scholz, W., Möhring, R., Knoblauch, H., Hiese, W., Engelhardt, I., Bruckner, H., Grohmann, R., Metje, W.-R., Pützschler, W., Rogosch, N., Schmidt, D., Schneider, U., & Thielmann, T. (2016). Baustoffkenntnis. Bundesanzeiger.
  61. 61Shoubi, M. V., Shoubi, M. V., Bagchi, A., & Barough, A. S. (2015). Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches. Ain Shams Engineering Journal, 6(1), 4155. 10.1016/j.asej.2014.09.006
  62. 62Slavkovic, K., & Stephan, A. (2025). Dynamic life cycle assessment of buildings and building stocks – A review. Renewable and Sustainable Energy Reviews, 212, 115262. 10.1016/J.RSER.2024.115262
  63. 63Slavkovic, K., Stephan, A., & Mulders, G. (2022). A parametric approach to defining archetypes for an integrated material stocks and flows analysis and life cycle assessment of built stocks. 55th International Conference of the Architectural Science Association. https://archscience.org/paper/a-parametric-approach-to-defining-archetypes-for-an-integrated-material-stocks-and-flows-analysis-and-life-cycle-assessment-of-built-stocks/
  64. 64Sousa, V., Bogas, J. A., Real, S., Meireles, I., & Carriço, A. (2023). Recycled cement production energy consumption optimization. Sustainable Chemistry and Pharmacy, 32, 101010. 10.1016/J.SCP.2023.101010
  65. 65Statistik Austria. (2024a). Bevölkerungsprognose 2024 (gerundete Ergebnisse). Erstellt am 27.11.2024. – Bevölkerung im Jahresdurchschnitt. https://www.statistik.at/statistiken/bevoelkerung-und-soziales/bevoelkerung/demographische-prognosen/bevoelkerungsprognosen-fuer-oesterreich-und-die-bundeslaender
  66. 66Statistik Austria. (2024b). STATcube: Gebäude- und Wohnungszählung – Gebäude – Zeitreihe ab 2011. https://www.statistik.at/statistiken/bevoelkerung-und-soziales/wohnen/gebaeudebestand
  67. 67Steininger, K. (2022). Projektüberblick zu Projektbeginn, Austria’s path to climate neutrality: identifying a cross-sector integrated framework and incentive design, distributional and budgetary implications. https://wegcwp.uni-graz.at/integrate/
  68. 68Stephan, A. (2022). Digital models for life-cycle assessment and material-flow analysis of urban built stocks. Lieuxdits, 21, 2025. 10.14428/LD.VI21.67213
  69. 69Swisspor. (2023). EPS R100% Recyclé. https://www.swisspor.com/ch-fr/eps-r100-recycle?redirect=true
  70. 70Taskhiri, M. S., Jeswani, H., Geldermann, J., & Azapagic, A. (2019). Optimising cascaded utilisation of wood resources considering economic and environmental aspects. Computers & Chemical Engineering, 124, 302316. 10.1016/J.COMPCHEMENG.2019.01.004
  71. 71Vogel, J., Alaux, N., Hoff, H., & Wallenko, L. (2025). Policies for the transition to a climate-neutral circular economy: A spotlight on innovation in Austrian industry. https://www.umweltbundesamt.at/fileadmin/site/publikationen/rep0965.pdf
  72. 72VÖZ. (2022). Roadmap zur CO2-Neutralität der österreichischen Zementindustrie bis 2050. https://zement.at/publikationen/co2-roadmap/
  73. 73Weikert, W. (2024). Filling the gap in building age data coverage with ML and widely available GIS data (Master’s thesis, RWTH Aachen).
  74. 74Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 12181230. 10.1007/s11367-016-1087-8
  75. 75WKO. (2019). Im Wettbewerb um die Zukunft – Klimapolitische Perspektiven für den Beitrag der österreichischen Industrie zur Treibhausgasneutralität. WKO.
  76. 76Wuyts, W., Miatto, A., Khumvongsa, K., Guo, J., Aalto, P., & Huang, L. (2022). How can material stock studies assist the implementation of the circular economy in cities? Environmental Science and Technology, 56(24), 1752317530. 10.1021/ACS.EST.2C05275
  77. 77Yang, X., Hu, M., Zhang, C., & Steubing, B. (2022). Urban mining potential to reduce primary material use and carbon emissions in the Dutch residential building sector. Resources, Conservation and Recycling, 180, 106215. 10.1016/J.RESCONREC.2022.106215
  78. 78Yang, Y., Guan, J., Nwaogu, J. M., Chan, A. P. C., Chi, H. lin, & Luk, C. W. H. (2022). Attaining higher levels of circularity in construction: Scientometric review and cross-industry exploration. Journal of Cleaner Production, 375, 133934. 10.1016/J.JCLEPRO.2022.133934
DOI: https://doi.org/10.5334/bc.676 | Journal eISSN: 2632-6655
Language: English
Submitted on: Jul 24, 2025
Accepted on: Oct 23, 2025
Published on: Nov 13, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Nicolas Alaux, Veronika Kulmer, Johanna Vogel, Alexander Passer, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.