References
- 1Aalto, J., Pirinen, P., & Jylhä, K. (2016). New gridded daily climatology of Finland: Permutation-based uncertainty estimates and temporal trends in climate. Journal of Geophysical Research: Atmospheres, 121(8), 3807–3823. 10.1002/2015JD024651
- 2Alvi, U., Suomi, J., & Käyhkö, J. (2022). A cost-effective method for producing spatially continuous high-resolution air temperature information in urban environments. Urban Climate, 42,
101123 . 10.1016/j.uclim.2022.101123 - 3Arbuthnott, K., Hajat, S., Heaviside, C., & Vardoulakis, S. (2016). Changes in population susceptibility to heat and cold over time: Assessing adaptation to climate change. Environmental Health, 15(S1),
S33 . 10.1186/s12940-016-0102-7 - 4Arola, T., & Korkka-Niemi, K. (2014). The effect of urban heat islands on geothermal potential: Examples from Quaternary aquifers in Finland. Hydrogeology Journal, 22(8), 1953–1967. 10.1007/s10040-014-1174-5
- 5Bassett, R., Cai, X., Chapman, L., Heaviside, C., Thornes, J. E., Muller, C. L., Young, D. T., & Warren, E. L. (2016). Observations of urban heat island advection from a high-density monitoring network. Quarterly Journal of the Royal Meteorological Society, 142(699), 2434–2441. 10.1002/qj.2836
- 6Benjamin, K., Luo, Z., & Wang, X. (2021). Crowdsourcing urban air temperature data for estimating urban heat island and building heating/cooling load in London. Energies, 14(16),
article 16 . 10.3390/en14165208 - 7Blunn, L. P., Ames, F., Croad, H. L., Gainford, A., Higgs, I., Lipson, M., & Lo, C. H. B. (2024). Machine learning bias correction and downscaling of urban heatwave temperature predictions from kilometre to hectometre scale. Meteorological Applications, 31(3),
e2200 . 10.1002/met.2200 - 8Brousse, O., Simpson, C., Kenway, O., Martilli, A., Krayenhoff, E. S., Zonato, A., & Heaviside, C. (2023). Spatially explicit correction of simulated urban air temperatures using crowdsourced data. Journal of Applied Meteorology and Climatology, 62(11), 1539–1572. 10.1175/JAMC-D-22-0142.1
- 9Brousse, O., Simpson, C., Walker, N., Fenner, D., Meier, F., Taylor, J., & Heaviside, C. (2022). Evidence of horizontal urban heat advection in London using six years of data from a citizen weather station network. Environmental Research Letters, 17(4),
044041 . 10.1088/1748-9326/ac5c0f - 10Brousse, O., Simpson, C., Zonato, A., Martilli, A., Taylor, J., Davies, M., & Heaviside, C. (2024b). Cool roofs could be most effective at reducing outdoor urban temperatures in London (United Kingdom) compared with other roof top and vegetation interventions: A mesoscale urban climate modeling study. Geophysical Research Letters, 51(13),
e2024GL109634 . 10.1029/2024GL109634 - 11Brousse, O., Simpson, C. H., Poorthuis, A., & Heaviside, C. (2024a). Unequal distributions of crowdsourced weather data in England and Wales. Nature Communications, 15(1),
4828 . 10.1038/s41467-024-49276-z - 12Brozovsky, J., Gaitani, N., & Gustavsen, A. (2021). A systematic review of urban climate research in cold and polar climate regions. Renewable and Sustainable Energy Reviews, 138,
110551 . 10.1016/j.rser.2020.110551 - 13Chakraborty, T., Venter, Z. S., Qian, Y., & Lee, X. (2022). Lower urban humidity moderates outdoor heat stress. AGU Advances, 3(5),
e2022AV000729 . 10.1029/2022AV000729 - 14Cheng, W., Li, D., Liu, Z., & Brown, R. D. (2021). Approaches for identifying heat-vulnerable populations and locations: A systematic review. Science of The Total Environment, 799,
149417 . 10.1016/j.scitotenv.2021.149417 - 15de Vos, L., Leijnse, H., Overeem, A., & Uijlenhoet, R. (2017). The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam. Hydrology and Earth System Sciences, 21(2), 765–777. 10.5194/hess-21-765-2017
- 16de Vos, L. W., Droste, A. M., Zander, M. J., Overeem, A., Leijnse, H., Heusinkveld, B. G., Steeneveld, G. J., & Uijlenhoet, R. (2020). Opportunistic sensing networks: A study in Amsterdam. Bulletin of the American Meteorological Society, 101(4), 313–318. 10.1175/BAMS-D-19-0091.A
- 17Demuzere, M., Bechtel, B., Middel, A., & Mills, G. (2019). European LCZ map [Dataset]. figshare. 10.6084/m9.figshare.13322450.v4
- 18Drebs, A., Suomi, J., & Mäkelä, A. (2023). Urban heat island research at high latitudes—Utilising Finland as an example. Boreal Environment Research, 28, 81–96.
http://hdl.handle.net/10138/578444 - 19Du, M., Li, N., Hu, T., Yang, Q., Chakraborty, T., Venter, Z., & Yao, R. (2024). Daytime cooling efficiencies of urban trees derived from surface temperature are much higher than those for air temperature. Environmental Research Letters, 19,
044037 . 10.1088/1748-9326/ad30a3 - 20Farahani, A. V., Jokisalo, J., Korhonen, N., Jylhä, K., & Kosonen, R. (2024). Hot summers in Nordic apartments: Exploring the correlation between outdoor weather conditions and indoor temperature. Buildings, 14(4). 10.3390/buildings14041053
- 21Fenner, D., Bechtel, B., Demuzere, M., Kittner, J., & Meier, F. (2021). CrowdQC+—A quality-control for crowdsourced air-temperature observations enabling world-wide urban climate applications. Frontiers in Environmental Science,
9 . 10.3389/fenvs.2021.720747 - 22Fenner, D., Meier, F., Bechtel, B., Otto, M., & Scherer, D. (2017). Intra and inter ‘local climate zone’ variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany. Meteorologische Zeitschrift, 26(5), 525–547. 10.1127/metz/2017/0861
- 23Finnish Meteorological Institute. (2024). Statistics from 1961 onwards.
https://en.ilmatieteenlaitos.fi/statistics-from-1961-onwards - 24Hammerberg, K., Brousse, O., Martilli, A., & Mahdavi, A. (2018). Implications of employing detailed urban canopy parameters for mesoscale climate modelling: A comparison between WUDAPT and GIS databases over Vienna, Austria. International Journal of Climatology, 38(S1), e1241–e1257. 10.1002/joc.5447
- 25IPCC. (2023).
Weather and climate extreme events in a changing climate . In Climate change 2021—The physical science basis: Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1513–1766). Cambridge University Press for the Intergovernmental Panel on Climate Change (IPCC). 10.1017/9781009157896.013 - 26Kim, S., Sinclair, V. A., Räisänen, J., & Ruuhela, R. (2018). Heat waves in Finland: Present and projected summertime extreme temperatures and their associated circulation patterns. International Journal of Climatology, 38(3), 1393–1408. 10.1002/joc.5253
- 27Kollanus, V., Tiittanen, P., & Lanki, T. (2021). Mortality risk related to heatwaves in Finland—Factors affecting vulnerability. Environmental Research, 201,
111503 . 10.1016/J.ENVRES.2021.111503 - 28Liu, H., He, B., Gao, S., Zhan, Q., & Yang, C. (2023). Influence of non-urban reference delineation on trend estimate of surface urban heat island intensity: A comparison of seven methods. Remote Sensing of Environment, 296,
113735 . 10.1016/j.rse.2023.113735 - 29Macintyre, H. L., Heaviside, C., Cai, X., & Phalkey, R. (2021). The winter urban heat island: Impacts on cold-related mortality in a highly urbanized European region for present and future climate. Environment International, 154,
106530 . 10.1016/j.envint.2021.106530 - 30Masselot, P., Mistry, M., Vanoli, J., Schneider, R., Iungman, T., Garcia-Leon, D., Ciscar, J.-C., Feyen, L., Orru, H., Urban, A., Breitner, S., Huber, V., Schneider, A., Samoli, E., Stafoggia, M., de’Donato, F., Rao, S., Armstrong, B., Nieuwenhuijsen, M., … Aunan, K. (2023). Excess mortality attributed to heat and cold: A health impact assessment study in 854 cities in Europe. Lancet Planetary Health, 7(4), e271–e281. 10.1016/S2542-5196(23)00023-2
- 31Meier, F., Fenner, D., Grassmann, T., Otto, M., & Scherer, D. (2017). Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate, 19, 170–191. 10.1016/j.uclim.2017.01.006
- 32Mikkonen, S., Laine, M., Mäkelä, H. M., Gregow, H., Tuomenvirta, H., Lahtinen, M., & Laaksonen, A. (2015). Trends in the average temperature in Finland, 1847–2013. Stochastic Environmental Research and Risk Assessment, 29(6), 1521–1529. 10.1007/s00477-014-0992-2
- 33Milojevic, A., Armstrong, B. G., Gasparrini, A., Bohnenstengel, S. I., Barratt, B., & Wilkinson, P. (2016). Methods to estimate acclimatization to urban heat island effects on heat- and cold-related mortality. Environmental Health Perspectives, 124(7), 1016–1022. 10.1289/ehp.1510109
- 34Muller, C. L., Chapman, L., Johnston, S., Kidd, C., Illingworth, S., Foody, G., Overeem, A., & Leigh, R. R. (2015). Crowdsourcing for climate and atmospheric sciences: Current status and future potential. International Journal of Climatology, 35(11), 3185–3203. 10.1002/joc.4210
- 35National Land Survey of Finland. (2019). Elevation model 10 m [Dataset]. Paituli.
https://paituli.csc.fi/download.html - 36O’Hara, T., McClean, F., Villalobos Herrera, R., Lewis, E., & Fowler, H. J. (2023). Filling observational gaps with crowdsourced citizen science rainfall data from the Met Office Weather Observation Website. Hydrology Research, 54(4), 547–556. 10.2166/nh.2023.136
- 37Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban climates. Cambridge University Press.
- 38Oudin Åström, D., Ebi, K. L., Vicedo-Cabrera, A. M., & Gasparrini, A. (2018). Investigating changes in mortality attributable to heat and cold in Stockholm, Sweden. International Journal of Biometeorology, 62(9), 1777–1780. 10.1007/s00484-018-1556-9
- 39Pirinen, P., Ruuhela, R., Jokinen, P., & Jylhä, K. (2024). Future scenarios for heating and cooling degree days in Finland. Ilmastokatsaus–Ilmatieteen laitos.
https://www.ilmastokatsaus.fi/2024/10/17/future-scenarios-for-heating-and-cooling-degree-days-in-finland/ - 40Potgieter, J., Nazarian, N., Lipson, M. J., Hart, M. A., Ulpiani, G., Morrison, W., & Benjamin, K. (2021). Combining high-resolution land use data with crowdsourced air temperature to investigate intra-urban microclimate. Frontiers in Environmental Science,
9 . 10.3389/fenvs.2021.720323 - 41Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., & Laaksonen, A. (2022). The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment, 3(1), 1–10. 10.1038/s43247-022-00498-3
- 42Ruosteenoja, K., & Räisänen, J. (2021). Evolution of observed and modelled temperatures in Finland in 1901–2018 and potential dynamical reasons for the differences. International Journal of Climatology, 41(5), 3374–3390. 10.1002/joc.7024
- 43Ruuhela, R., Hyvärinen, O., & Jylhä, K. (2018). Regional assessment of temperature-related mortality in Finland. International Journal of Environmental Research and Public Health, 15(3),
article 3 . 10.3390/ijerph15030406 - 44Ruuhela, R., Votsis, A., Kukkonen, J., Jylhä, K., Kankaanpää, S., & Perrels, A. (2020). Temperature-related mortality in Helsinki compared to its surrounding region over two decades, with special emphasis on intensive heatwaves. Atmosphere 2021, 12(1),
46 . 10.3390/ATMOS12010046 - 45Sohail, H., Kollanus, V., Tiittanen, P., Mikkonen, S., Lipponen, A. H., Zhang, S., Breitner, S., Schneider, A., & Lanki, T. (2023). Low temperature, cold spells, and cardiorespiratory hospital admissions in Helsinki, Finland. Air Quality, Atmosphere & Health, 16(2), 213–220. 10.1007/s11869-022-01259-z
- 46Sohail, H., Kollanus, V., Tiittanen, P., Schneider, A., & Lanki, T. (2020). Heat, heatwaves and cardiorespiratory hospital admissions in Helsinki, Finland. International Journal of Environmental Research and Public Health, 17(21),
article 21 . 10.3390/ijerph17217892 - 47Steeneveld, G. J., Koopmans, S., Heusinkveld, B., vanHove, L., & Holtslag, A. (2011). Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. Journal of Geophysical Research: Atmospheres, 116(D20). 10.1029/2011JD015988
- 48Suomi, J., & Käyhkö, J. (2012). The impact of environmental factors on urban temperature variability in the coastal city of Turku, SW Finland. International Journal of Climatology, 32(3), 451–463. 10.1002/joc.2277
- 49Suomi, J., Saranko, O., Partanen, A.-I., Fortelius, C., Gonzales-Inca, C., & Käyhkö, J. (2024). Evaluation of surface air temperature in the HARMONIE-AROME weather model during a heatwave in the coastal city of Turku, Finland. Urban Climate, 53,
101811 . 10.1016/j.uclim.2024.101811 - 50Suulamo, U., Remes, H., Tarkiainen, L., Murphy, M., & Martikainen, P. (2024). Excess winter mortality in Finland, 1971–2019: A register-based study on long-term trends and effect modification by sociodemographic characteristics and pre-existing health conditions. BMJ Open, 14(2),
e079471 . 10.1136/bmjopen-2023-079471 - 51SYKE. (2018). YKR urban–rural classification 2018 [Dataset].
https://wwwd3.ymparisto.fi/d3/gis_data/spesific/YKRKaupunkiMaaseutuLuokitus2018.zip - 52SYKE & Statistics Finland. (2023a). YKR-data: Buildings [Dataset].
https://ckan.ymparisto.fi/en/dataset/ykr-ruutuaineisto - 53SYKE & Statistics Finland. (2023b). YKR-data: Population [Dataset].
https://ckan.ymparisto.fi/en/dataset/ykr-ruutuaineisto - 54Taylor, J., McLeod, R., Petrou, G., Hopfe, C., Mavrogianni, A., Castaño-Rosa, R., Pelsmakers, S., & Lomas, K. (2023). Ten questions concerning residential overheating in Central and Northern Europe. Building and Environment, 234,
110154 . 10.1016/j.buildenv.2023.110154 - 55Taylor, J., Simpson, C., Brousse, O., Viitanen, A.-K., & Heaviside, C. (2024). The potential of urban trees to reduce heat-related mortality in London. Environmental Research Letters, 19(5),
054004 . 10.1088/1748-9326/ad3a7e - 56Tobías, A., Hashizume, M., Honda, Y., Sera, F., Ng, C. F. S., Kim, Y., Roye, D., Chung, Y., Dang, T. N., Kim, H., Lee, W., Íñiguez, C., Vicedo-Cabrera, A., Abrutzky, R., Guo, Y., Tong, S., Coelho, M. de S. Z. S., Saldiva, P. H. N., Lavigne, E., … Gasparrini, A. (2021). Geographical variations of the minimum mortality temperature at a global scale: A multicountry study. Environmental Epidemiology, 5(5),
e169 . 10.1097/EE9.0000000000000169 - 57Varentsov, M., Fenner, D., Meier, F., Samsonov, T., & Demuzere, M. (2021). Quantifying local and mesoscale drivers of the urban heat island of Moscow with reference and crowdsourced observations. Frontiers in Environmental Science,
9 . 10.3389/fenvs.2021.716968 - 58Varentsov, M., Konstantinov, P., Repina, I., Artamonov, A., Pechkin, A., Soromotin, A., Esau, I., & Baklanov, A. (2023). Observations of the urban boundary layer in a cold climate city. Urban Climate, 47,
101351 . 10.1016/j.uclim.2022.101351 - 59Venter, Z. S., Brousse, O., Esau, I., & Meier, F. (2020). Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sensing of Environment, 242,
111791 . 10.1016/j.rse.2020.111791 - 60Venter, Z. S., Chakraborty, T., & Lee, X. (2021). Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Science Advances, 7(22),
eabb9569 . 10.1126/sciadv.abb9569 - 61Vulova, S., Meier, F., Fenner, D., Nouri, H., & Kleinschmit, B. (2020). Summer nights in Berlin, Germany: Modeling air temperature spatially with remote sensing, crowdsourced weather data, and machine learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5074–5087. 10.1109/JSTARS.2020.3019696
- 62Wolters, D., & Brandsma, T. (2012). Estimating the urban heat island in residential areas in the Netherlands using observations by weather amateurs. Journal of Applied Meteorology and Climatology, 51(4), 711–721. 10.1175/JAMC-D-11-0135.1
- 63Zumwald, M., Knüsel, B., Bresch, D. N., & Knutti, R. (2021). Mapping urban temperature using crowd-sensing data and machine learning. Urban Climate, 35,
100739 . 10.1016/j.uclim.2020.100739
