Have a personal or library account? Click to login
Are simple models for natural ventilation suitable for shelter design? Cover

Are simple models for natural ventilation suitable for shelter design?

Open Access
|Apr 2025

References

  1. 1Albadra, D., Elamin, Z., Adeyeye, K., Polychronaki, E., Coley, D. A., Holley, J., & Copping, A. (2020a). Participatory design in refugee camps: Comparison of different methods and visualization tools. Building Research & Information, 49(2), 248264. 10.1080/09613218.2020.1740578
  2. 2Albadra, D., Kuchai, N., Acevedo-De-los-Ríos, A., Rondinel-Oviedo, D., Coley, D., da Silva, C. F., Rana, C., Mower, K., Dengel, A., Maskell, D., & Ball, R. J. (2020b). Measurement and analysis of air quality in temporary shelters on three continents. Building and Environment, 185, 107259. 10.1016/j.buildenv.2020.107259
  3. 3Arendt, K., Krzaczek, M., & Tejchman, J. (2017). Influence of input data on airflow network accuracy in residential buildings with natural wind- and stack-driven ventilation. Building Simulation, 10(2), 229238. 10.1007/s12273-016-0320-5
  4. 4ASHRAE. (2019). ANSI/ASHRAE Standard 62.2–2019—Ventilation and acceptable indoor air quality in residential buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2
  5. 5ASHRAE. (2021a). ASHRAE design guide for natural ventilation. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). https://store.accuristech.com/ashrae/standards/ashrae-design-guide-for-natural-ventilation?product_id=2223402
  6. 6ASHRAE. (2021b). The 2021 ASHRAE fundamentals handbook. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). https://www.ashrae.org/technical-resources/ashrae-handbook/description-2021-ashrae-handbook-fundamentals
  7. 7Attia, S., Hensen, J. L. M., Beltrán, L., & Herde, A. D. (2012). Selection criteria for building performance simulation tools: Contrasting architects’ and engineers’ needs. Journal of Building Performance Simulation, 5(3), 155169. 10.1080/19401493.2010.549573
  8. 8Baeumle, R. (2019). Natural ventilation of buildings: From fluid mechanics to architectural design guidance (Apollo—University of Cambridge Repository). 10.17863/CAM.77625
  9. 9Botchway, E. A., Agyekum, K., Kotei-Martin, J. N., & Afram, S. O. (2023). Utilization of simulation tools for building performance assessment among design professionals. International Journal of Building Pathology and Adaptation. 10.1108/IJBPA-01-2023-0006
  10. 10Brandan, M. A. M., & Espinosa, F. A. D. (2018). Modeling natural ventilation in early and late design stages: Developing the right simulation workflow with the right inputs. ASHRAE and IBPSA-USA Building Simulation Conference (pp. 242249). www.ibpsa.us
  11. 11British Standard. (1991). BS 5925:1991: Code of practice for ventilation principles and designing for natural ventilation. www.aivc.org/sites/default/files/members_area/medias/pdf/Airbase/airbase_00667.pdf
  12. 12Caciolo, M., Cui, S., Stabat, P., & Marchio, D. (2013). Development of a new correlation for single-sided natural ventilation adapted to leeward conditions. Energy and Buildings, 60, 372382. 10.1016/j.enbuild.2013.01.024
  13. 13Caciolo, M., Stabat, P., & Marchio, D. (2011). Full scale experimental study of single-sided ventilation: Analysis of stack and wind effects. Energy and Buildings, 43(7), 17651773. 10.1016/j.enbuild.2011.03.019
  14. 14CEN. (2019). EN 16798-1:2019: Energy performance of buildings—Ventilation for buildings—Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings. https://www.cencenelec.eu/
  15. 15Chiu, Y.-H., & Etheridge, D. W. (2004). Experimental technique to determine unsteady flow in natural ventilation stacks at model scale. Journal of Wind Engineering and Industrial Aerodynamics, 92(3–4), 291313. 10.1016/j.jweia.2003.12.002
  16. 16Chu, C. R., Chen, R.-H., & Chen, J.-W. (2011). A laboratory experiment of shear-induced natural ventilation. Energy and Buildings, 43(10), 26312637. 10.1016/j.enbuild.2011.06.014
  17. 17Chu, C.-R., Chiu, Y.-H., Tsai, Y.-T., & Wu, S.-L. (2015). Wind-driven natural ventilation for buildings with two openings on the same external wall. Energy and Buildings, 108, 365372. 10.1016/j.enbuild.2015.09.041
  18. 18CIBSE. (2015). Environmental design Environmental design: CIBSE Guide A. Chartered Institution of Building Services Engineers (CIBSE). www.cibse.org
  19. 19Cockroft, J. (1979). Heat transfer and air flow in buildings. University of Glasgow.
  20. 20Cockroft, J. P., & Robertson, P. (1976). Ventilation of an enclosure through a single opening. Building and Environment, 11(1), 2935. 10.1016/0360-1323(76)90016-0
  21. 21da Graça, C., & Linden, P. (2003). Simplified modeling of cross-ventilation airflow. ASHRAE Transactions, 109(1), 6579. http://maeresearch.ucsd.edu/linden/pdf_files/92cl02.pdf.
  22. 22Daish, N. C., Carrilho Da Graça, G., Linden, P. F., & Banks, D. (2016). Impact of aperture separation on wind-driven single-sided natural ventilation. Building and Environment, 108, 122134. 10.1016/j.buildenv.2016.08.015
  23. 23Davies Wykes, M. S., Chahour, E., & Linden, P. F. (2020). The effect of an indoor–outdoor temperature difference on transient cross-ventilation. Building and Environment, 168, 106447. 10.1016/j.buildenv.2019.106447
  24. 24de Castro, M., Kuchai, N., Natarajan, S., Adeyeye, K., Fosas, D., Moran, F., McCullen, N., Wang, Z., & Coley, D. (2021). ShelTherm: An aid-centric thermal model for shelter design. Journal of Building Engineering, 44, 102579. 10.1016/j.jobe.2021.102579
  25. 25Dimitroulopoulou, C. (2012). Ventilation in European dwellings: A review. Building and Environment, 47, 109125. 10.1016/j.buildenv.2011.07.016
  26. 26Emmerich, S. (2001). Validation of multizone IAQ modeling of residential-scale buildings: A review. ASHRAE Transactions. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860837
  27. 27Escombe, A. R., Oeser, C. C., Gilman, R. H., Navincopa, M., Ticona, E., Pan, W., Martínez, C., Chacaltana, J., Rodríguez, R., Moore, D. A. J., Friedland, J. S., & Evans, C. A. (2007). Natural ventilation for the prevention of airborne contagion. PLoS Med, 4(2), 68. 10.1371/journal.pmed.0040068
  28. 28Etheridge, D. (2011). Natural ventilation of buildings: Theory, measurement and design. Wiley.
  29. 29Etheridge, D. W., & Sandberg, M. (1984). A simple parametric study of ventilation. Building and Environment, 19(3), 163173. 10.1016/0360-1323(84)90023-4
  30. 30European Parliamentary Research Service. (2019). Technologies for humanitarian aid. https://epthinktank.eu/2017/09/25/technologies-for-humanitarian-aid/
  31. 31Fan, S., Davies Wykes, M. S., Lin, W. E., Jones, R. L., Robins, A. G., & Linden, P. F. (2021). A full-scale field study for evaluation of simple analytical models of cross ventilation and single-sided ventilation. Building and Environment, 187, 107386. 10.1016/j.buildenv.2020.107386
  32. 32Fosas, D., Albadra, D., Natarajan, S., & Coley, D. (2019). Improving the thermal comfort in new shelters. 10.6084/M9.FIGSHARE.8977556.V1
  33. 33Fosas, D., Albadra, D., Natarajan, S., & Coley, D. A. (2018). Refugee housing through cyclic design. Architectural Science Review, 61(5), 327337. 10.1080/00038628.2018.1502155
  34. 34Hart, J., Paszkiewicz, N., & Albadra, D. (2018). Shelter as Home?: Syrian homemaking in Jordanina refugee camps. Human Organization, 77(4), 371380. 10.17730/0018-7259.77.4.371
  35. 35Hunt, G. R., & Linden, P. P. (1999). The fluid mechanics of natural ventilation—Displacement ventilation by buoyancy-driven flows assisted by wind. Building and Environment, 34(6), 707720. 10.1016/S0360-1323(98)00053-5
  36. 36Jayakody, C., Malalgoda, C. I., Amaratunga, D., Haigh, R., Liyanage, C., Hamza, M., Witt, E., & Fernando, N. (2022). Addressing housing needs of the displaced people promoting resilient and sustainable communities. International Journal of Disaster Resilience in the Built Environment, 13(3), 368385. 10.1108/IJDRBE-09-2021-0124
  37. 37Jiang, Z., Kobayashi, T., Yamanaka, T., & Sandberg, M. (2023). A literature review of cross ventilation in buildings. Energy and Buildings, 291, 113143. 10.1016/j.enbuild.2023.113143
  38. 38Kato, S., Kono, R., Hasama, T., & Ooka, R. (2006). A wind tunnel experimental analysis of the ventilation characteristics of a room with single-sided opening in uniform flow. International Journal of Ventilation, 5(1). 10.1080/14733315.2006.11683734
  39. 39Kuchai, N., Albadra, D., Lo, S., Saied, S., Paszkiewicz, N., Shepherd, P., Natarajan, S., Orr, J., Hart, J., Adeyeye, K., & Coley, D. (2024). Improving the shelter design process via a shelter assessment matrix. Progress in Disaster Science, 23, 100354. 10.1016/j.pdisas.2024.100354
  40. 40Kuchai, N., Shepherd, P., Calabria-Holley, J., Copping, A., Matard, A., & Coley, D. (2020). The potential for computational IT tools in disaster relief and shelter design. Journal of International Humanitarian Action, 5(1), 1. 10.1186/s41018-020-00069-1
  41. 41Larsen, T. S., & Heiselberg, P. (2008). Single-sided natural ventilation driven by wind pressure and temperature difference. Energy and Buildings, 40(6), 10311040. 10.1016/j.enbuild.2006.07.012
  42. 42Larsen, T. S., Plesner, C., Leprince, V., Carrié, F. R., & Bejder, A. K. (2018). Calculation methods for single-sided natural ventilation: Now and ahead. Energy and Buildings, 177, 279289. 10.1016/j.enbuild.2018.06.047
  43. 43Li, Y. (2000). Buoyancy-driven natural ventilation in a thermally stratified one zone building. Building and Environment, 3(35), 207214. 10.1016/S0360-1323(99)00012-8
  44. 44Li, Y., & Delsante, A. (2001). Natural ventilation induced by combined wind and thermal forces. Building and Environment, 36(1), 59e71. 10.1016/S0360-1323(99)00070-0
  45. 45Liddament, M. W. (1986). Air infiltration calculation techniques—An applications guide. Air Infiltration and Ventilation Centre. https://www.aivc.org/resource/air-infiltration-calculation-techniques-applications-guide
  46. 46Liman, K., & Abadie, M. (1998). Naturally ventilated buildings—Porte Oceane Residence. In Allard, F. (Ed.), Natural ventilation in buildings (pp. 307315). James & James.
  47. 47Linden, P. F., Lane-Serff, G. F., & Smeed, D. A. (1990). Emptying filling boxes: The fluid mechanics of natural ventilation. Journal of Fluid Mechanics, 212(1), 309. 10.1017/S0022112090001987
  48. 48Liu, X. (2022). ASTM and ASHRAE Standards for the assessment of indoor air quality. In Zhang, Y., Hopke, P. K., & Mandin, C. (Eds.), Handbook of indoor air quality. Springer. 10.1007/978-981-16-7680-2_50
  49. 49Matard, A., Kuchai, N., Allen, S., Shepherd, P., Adeyeye, K., McCullen, N., & Coley, D. (2019). An analysis of the embodied energy and embodied carbon of refugee shelters worldwide. International Journal of the Constructed Environment, 10(3), 2954. 10.18848/2154-8587/CGP/v10i03/29-54
  50. 50Phaff, J. C., & De Gids, W. (1980). The ventilation of buildings: Investigation of the consequences of opening one window on the internal climate of room. AIVC. www.aivc.org/resource/ventilation-buildings-investigation-consequences-opening-one-window-internal-climate-room
  51. 51Sachs, J. D., Karim, S. S. A., Aknin, L., Allen, J., Brosbøl, K., Colombo, F., Barron, G. C., Espinosa, M. F., Gaspar, V., Gaviria, A., Haines, A., Hotez, P. J., Koundouri, P., Bascuñán, F. L., Lee, J.-K., Pate, M. A., Ramos, G., Reddy, K. S., Serageldin, I., … Michie, S. (2022). The Lancet Commission on lessons for the future from the COVID-19 pandemic. Lancet, 400(10359), 12241280. 10.1016/S0140-6736(22)01585-9
  52. 52Sacht, H., & Lukiantchuki, M. A. (2017). Windows size and the performance of natural ventilation. Procedia Engineering, 196, 972979. 10.1016/j.proeng.2017.08.038
  53. 53Sechi, G. J., Hendriks, E., & Pregnolato, M. (2023). Digitalization in disaster risk reduction: The use of smartphones to enhance the safety of informal settlements in Iringa, Tanzania. International Journal of Disaster Risk Science, 14(2), 171182. 10.1007/s13753-023-00483-0
  54. 54Shaw, H., & Whyte, W. (1974). Air movement through doorways—The influence of temperature and its control by forced airflow. Building Services Engineering, 42, 210218. https://www.aivc.org/sites/default/files/members_area/medias/pdf/Airbase/airbase_00156.pdf
  55. 55Sundell, J., Levin, H., Nazaroff, W. W., Cain, W. S., Fisk, W. J., Grimsrud, D. T., Gyntelberg, F., Li, Y., Persily, A. K., Pickering, A. C., Samet, J. M., Spengler, J. D., Taylor, S. T., & Weschler, C. J. (2011). Ventilation rates and health: Multidisciplinary review of the scientific literature. Indoor Air, 21(3), 191204. 10.1111/j.1600-0668.2010.00703.x
  56. 56Terpager Andersen, K. (1998). Natural ventilation by thermal buoyancy with several openings and with temperature stratification. In 19th Annual AIVC Conference. www.aivc.org/sites/default/files/airbase_12106.pdf
  57. 57Terpager Andersen, K. (2003). Theory for natural ventilation by thermal buoyancy in one zone with uniform temperature. Building and Environment, 38(11), 12811289. 10.1016/S0360-1323(03)00132-X
  58. 58UK Government. (2022). Approved document F. https://www.gov.uk/government/publications/ventilation-approved-document-f
  59. 59UNHCR (2016). Shelter design catalogue. United Nations High Commissioner for Refugees (UNHCR). https://emergency.unhcr.org/sites/default/files/2024-01/unhcr_shelter_design_catalogue_january_2016.pdf
  60. 60Vallejo, J., Ford, B., Ruiz, P. A., Diaz, C., & de Sevilla, U. (2015). Designing for natural ventilation: An early design tool. In Passive and Low Energy Architecture Conference 2015 (PLEA). https://westminsterresearch.westminster.ac.uk/item/qq1v3/designing-for-natural-ventilation-an-early-stage-design-tool
  61. 61Van Tran, V., Park, D., & Lee, Y. C. (2020). Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. International Journal of Environmental Research and Public Health, 17(8). 10.3390/ijerph17082927
  62. 62Wang, H., & Chen, Q. (2012). A new empirical model for predicting single-sided, wind-driven natural ventilation in buildings. Energy and Buildings, 54, 386394. 10.1016/j.enbuild.2012.07.028
  63. 63Wargocki, P., Sundell, J., Bischof, W., Brundrett, G., Fanger, P. O., Gyntelberg, F., Hanssen, S. O., Harrison, P., Pickering, A., Seppänen, O., & Wouters, P. (2002). Ventilation and health in non-industrial indoor environments: Report from a European Multidisciplinary Scientific Consensus Meeting (EUROVEN). Indoor Air, 12(2), 113128. 10.1034/j.1600-0668.2002.01145.x
  64. 64Warren, P. (1977). Ventilation through openings on one wall only. UNESCO International Seminar, Heat Transfer in Buildings, Dubrovnik, 1977. https://www.aivc.org/resource/ventilation-through-openings-one-wall-only
  65. 65Warren, P. R., & Parkins, L. M. (1985). Single-sided ventilation through open windows. Conference Proceedings. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). https://www.scopus.com/record/display.uri?eid=2-s2.0-0021295517&origin=inward&txGid=e4dac35b0dd8cb0925b4f468eaad037a
  66. 66Webb, S., Weinstein Sheffield, E., & Flinn, B. (Eds.). (2020). Towards healthier homes in humanitarian settings. Centre for Development and Emergency Practice, Oxford Brookes University and CARE International UK. https://insights.careinternational.org.uk/publications/towards-healthier-homes-in-humanitarian-settings
  67. 67Yamanaka, T., Kotani, H., Iwamoto, K., & Kato, M. (2006). Natural, wind-forced ventilation caused by turbulence in a room with a single opening. International Journal of Ventilation, 5(1), 179187. 10.1080/14733315.2006.11683735
  68. 68Zhuang, C., Choudhary, R., & Mavrogianni, A. (2022). Probabilistic occupancy forecasting for risk-aware optimal ventilation through autoencoder Bayesian deep neural networks. Building and Environment, 219, 109207. 10.1016/j.buildenv.2022.109207
DOI: https://doi.org/10.5334/bc.497 | Journal eISSN: 2632-6655
Language: English
Submitted on: Sep 13, 2024
Accepted on: Mar 20, 2025
Published on: Apr 8, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Anna Conzatti, Daniel Fosas de Pando, Ben Chater, David Coley, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.