References
- 1Ahmed, W., Asif, M., & Alrashed, F. (2019). Application of building performance simulation to design energy-efficient homes: Case study from Saudi Arabia. Sustainability (Switzerland), 11(21),
6048 . 10.3390/su11216048 - 2Akin, S., Eghbali, A., Nwagwu, C., & Hertwich, E. (2024). Archetype-based life-cycle assessment of national residential building stocks: Resource use and greenhouse gas emissions in Western Asia and Northern Africa. Zenodo. 10.5281/zenodo.13380340
- 3Akin, S., Nwagwu, C. C., Heeren, N., & Hertwich, E. (2023). Archetype-based energy and material use estimation for the residential buildings in Arab Gulf countries. Energy and Buildings, 298,
113537 . 10.1016/j.enbuild.2023.113537 - 4Al-Hinai, H., Batty, W. J., & Probert, S. D. (1993). Vernacular architecture of Oman: Features that enhance thermal comfort achieved within buildings. Applied Energy, 44(3), 233–244. 10.1016/0306-2619(93)90019-L
- 5Al-Mumin, A., Khattab, O., & Sridhar, G. (2003). Occupants’ behavior and activity patterns influencing the energy consumption in the Kuwaiti residences. Energy and Buildings, 35(6), 549–559. 10.1016/S0378-7788(02)00167-6
- 6Alnuaimi, A. S. (2016). Structural overdesign of villa in Oman. In Lecture notes in engineering and computer science, 2224, 709–713.
https://squ.elsevierpure.com/en/publications/structural-overdesign-of-villa-in-oman - 7Ameer, B., & Krarti, M. (2016). Impact of subsidization on high energy performance designs for Kuwaiti residential buildings. Energy and Buildings, 116(March), 249–262. 10.1016/j.enbuild.2016.01.018
- 8Ayçam, İ., Akalp, S., & Görgülü, L. S. (2020). The application of courtyard and settlement layouts of the traditional Diyarbakır houses to contemporary houses: A case study on the analysis of energy performance. Energies, 13(3),
587 . 10.3390/en13030587 - 9Biehl, K. S. (2014).
Migration, urban space and diversity: A case from İstanbul . Insight Turkey, 16(4), 55–63.https://www.insightturkey.com/file/218/migration-urban-space-and-diversity-a-case-from-istanbul-fall-2014 - 10BSI. (2011). EN 15978: Sustainability of construction works: Assessment of environmental performance of buildings: Calculation method. British Standards Institution (BSI).
https://knowledge.bsigroup.com/products/sustainability-of-construction-works-assessment-of-environmental-performance-of-buildings-calculation-method - 11Cerezo, C., Sokol, J., AlKhaled, S., Reinhart, C., Al-Mumin, A., & Hajiah, A. (2017). Comparison of four building archetype characterization methods in urban building energy modeling (UBEM): A residential case study in Kuwait City. Energy and Buildings, 154, 321–334. 10.1016/j.enbuild.2017.08.029
- 12Corgnati, S. P., Fabrizio, E., Filippi, M., & Monetti, V. (2013). Reference buildings for cost optimal analysis: Method of definition and application. Applied Energy, 102, 983–993. 10.1016/j.apenergy.2012.06.001
- 13DesignBuilder Software. (2017). DesignBuilder Software Ltd—Tutorials. 2017.
https://designbuilder.co.uk/ - 14Ecoinvent. (2024). Ecoinvent, ReCiPe 2016 v1.03, Midpoint.
https://ecoinvent.org/database-login/ - 15El Hafdaoui, H., Khallaayoun, A., Bouarfa, I., & Ouazzani, K. (2023). Machine learning for embodied carbon life cycle assessment of buildings. Journal of Umm Al-Qura University for Engineering and Architecture, 14(3), 188–200. 10.1007/s43995-023-00028-y
- 16Frischknecht, R., Birgisdottir, H., Chae, C. U., Lützkendorf, T., Passer, A., Alsema, E., Balouktsi, M. et al. (2019). Comparison of the environmental assessment of an identical office building with national methods. In IOP conference series: Earth and environmental science,
323 . 10.1088/1755-1315/323/1/012037 - 17Heeren, N., Nistad, A., Krych, K., & Akin, S. (2023). Nheeren/BuildME. GitHub. 2023.
https://github.com/NTNU-IndEcol/BuildME - 18Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 22(2), 138–147. 10.1007/s11367-016-1246-y
- 19IEA. (2020a). Countries & regions—IEA. 2020. International Energy Agency (IEA).
https://www.iea.org/countries - 20IEA. (2020b). World energy statistics and balances 2020. International Energy Agency (IEA).
https://www.iea.org/data-and-statistics/data-product/world-energy-balances - 21IEA. (2023). Energy efficiency 2023. International Energy Agency (IEA).
https://www.iea.org/reports/energy-efficiency-2023 - 22Imam, A. A., Abusorrah, A., & Marzband, M. (2024). Potentials and opportunities of solar PV and wind energy sources in Saudi Arabia: Land suitability, techno-socio-economic feasibility, and future variability. Results in Engineering, 21,
101785 . 10.1016/j.rineng.2024.101785 - 23IPCC. (2014). Climate change 2013—The physical science basis: Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press for the Intergovernmental Panel on Climate Change (IPCC). 10.1017/CBO9781107415324
- 24IPCC. (2021). Climate change 2021: The physical science basis. Intergovernmental Panel on Climate Change (IPCC).
https://www.ipcc.ch/report/ar6/wg1/ - 25ISO. (2006a). ISO 14040:2006: Environmental management—Life cycle assessment—Principles and framework. International Organization for Standardization (ISO).
https://www.iso.org/standard/37456.html - 26ISO. (2006b). 14044: Environmental management—Life cycle assessment—Requirements and guidelines. International Organization for Standardization (ISO).
https://www.iso.org/standard/38498.html - 27Iyer, A. V., Rao, N. D., & Hertwich, E. G. (2023). Review of urban building types and their energy use and carbon emissions in life-cycle analyses from low- and middle-income countries. Environmental Science & Technology, 57(26), 9445–9458. 10.1021/acs.est.2c06418
- 28Jaber, S., & Ajib, S. (2011). Optimum, technical and energy efficiency design of residential building in Mediterranean region. Energy and Buildings, 43(8), 1829–1834. 10.1016/j.enbuild.2011.03.024
- 29Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G., von Bloh, W., Brovkin, V., et al. (2013). Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmospheric Chemistry and Physics, 13(5), 2793–2825. 10.5194/acp-13-2793-2013
- 30Kirimtat, A., & Krejcar, O. (2018). A review of infrared thermography for the investigation of building envelopes: Advances and prospects. Energy and Buildings, 176(October), 390–406. 10.1016/j.enbuild.2018.07.052
- 31Krarti, M., & Dubey, K. (2018). Review analysis of economic and environmental benefits of improving energy efficiency for UAE building stock. Renewable and Sustainable Energy Reviews, 82(February), 14–24. 10.1016/j.rser.2017.09.013
- 32Krych, K., Heeren, N., & Hertwich, E. G. (2021). Factors influencing the life-cycle GHG emissions of Brazilian office buildings. Buildings and Cities, 2(1), 856–873. 10.5334/bc.136
- 33Mata, É., Sasic Kalagasidis, A., & Johnsson, F. (2014). Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Building and Environment, 81, 270–282. 10.1016/j.buildenv.2014.06.013
- 34Mehio-Sibai, A., Farah, R., & Dakik, H. (2017). Energy performance of residential buildings in Lebanon: Current status and future prospects. Energy Procedia, 119, 894–903.
https://www.sciencedirect.com/science/article/pii/S1876610217312197 - 35Meteotest, AG. (2023). Meteonorm Software. 2023.
https://meteonorm.com/en/ - 36Nayak, B. K., Sansaniwal, S. K., Mathur, J., Chandra, T., Garg, V., & Gupta, R. (2023). A review of residential building archetypes and their applications to study building energy consumption. Architectural Science Review, 66(3), 187–200. 10.1080/00038628.2023.2193167
- 37Nejat, P., Jomehzadeh, F., Taheri, M. M., Gohari, M., & Muhd, M. Z. (2015). A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and Sustainable Energy Reviews, 43, 843–862. 10.1016/j.rser.2014.11.066
- 38Nutkiewicz, A., Jain, R. K., & Bardhan, R. (2018). Energy modeling of urban informal settlement redevelopment: Exploring design parameters for optimal thermal comfort in Dharavi, Mumbai, India. Applied Energy, 231, 433–445. 10.1016/j.apenergy.2018.09.002
- 39Our World in Data. (2022). Share of the urban population living in slums, 2022.
https://ourworldindata.org/grapher/share-of-urban-population-living-in-slums - 40Park, J., Kim, T., & Lee, C. S. (2019). Development of thermal comfort-based controller and potential reduction of the cooling energy consumption of a residential building in Kuwait. Energies, 12(17),
3348 . 10.3390/en12173348 - 41Pauliuk, S., & Heeren, N. (2020). ODYM—An open software framework for studying dynamic material systems: Principles, implementation, and data structures. Journal of Industrial Ecology, 24(3), 446–458. 10.1111/jiec.12952
- 42Ramani, A., & García De Soto, B. (2021). Estidama and the Pearl Rating System: A comprehensive review and alignment with LCA. Sustainability (Switzerland), 13(9), 1–31. 10.3390/su13095041
- 43Republic of Armenia. (2016). Construction norms RACN 24-01-2016 ‘Thermal protection of buildings’.
https://nature-ic.am/en/publications/%22thermal-protection-of-buildings%22-racn-24-01-2016 - 44Röck, M., Mendes Saade, M. R., Balouktsi, M., Rasmussen, F. N., Birgisdottir, H., Frischknecht, R., Habert, G., Lützkendorf, T., & Passer, A. (2020). Embodied GHG emissions of buildings—The hidden challenge for effective climate change mitigation. Applied Energy, 258(January),
114107 . 10.1016/j.apenergy.2019.114107 - 45Sandberg, N. H., Sartori, I., Heidrich, O., Dawson, R., Dascalaki, E., Dimitriou, S., Vimm-r, T., et al. (2016). Dynamic building stock modelling: Application to 11 European countries to support the energy efficiency and retrofit ambitions of the EU. Energy and Buildings, 132, 26–38. 10.1016/j.enbuild.2016.05.100
- 46Schimschar, S., Boermans, T., Kretschmer, D., Offermann, M., & Ashok, J. (2016). U-value maps Turkey—Applying the comparative methodology framework for cost-optimality in the context of the EPBD. Final report. Ecofys.
https://www.izoder.org.tr/dosyalar/haberler/Turkiye-U-degerleri-haritasi-raporu-2016-Ingilizce.pdf - 47Taleb, H. M., & Sharples, S. (2011). Developing sustainable residential buildings in Saudi Arabia: A case study. Applied Energy, 88(1), 383–391. 10.1016/j.apenergy.2010.07.029
- 48UNDESA Sustainable Development. (2023). The 17 Goals. United Nations Department of Economic and Social Affairs (UNDESA) Sustainable Development.
https://sdgs.un.org/goals - 49UNEP. (2022). Global resources outlook 2022: Materials and the sustainable development goals. United Nations Environment Programme (UNDP).
https://www.unep.org/resources/report/global-resources-outlook-2022 - 50United Nations. (2023). 2020 Energy balances.
https://unstats.un.org/unsd/energystats/pubs/balance/ - 51Vásquez, F., Løvik, A. N., Sandberg, N. H., & Müller, D. B. (2016). Dynamic type-cohort-time approach for the analysis of energy reductions strategies in the building stock. Energy and Buildings, 111, 37–55. 10.1016/j.enbuild.2015.11.018
- 52Vilches, A., Padura, A. B., & Huelva, M. M. (2017). Retrofitting of homes for people in fuel poverty: Approach based on household thermal comfort. Energy Policy, 100(January), 283–291. 10.1016/J.ENPOL.2016.10.016
- 53World Bank. (2023). World Bank indicators. Data.
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD - 54World Bank. (2024). Access to electricity (% of population)—Syrian Arab Republic | data.
https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?locations=SY - 55Yang, X., Hu, M., Tukker, A., Zhang, C., Huo, T., & Steubing, B. (2022). A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands. Applied Energy, 306,
118060 . 10.1016/j.apenergy.2021.118060 - 56Yüksek, I. (2013). Design of building elements in traditional houses (a case study in Kırklareli/Turkey). Gazi University Journal of Science, 1(4), 57–67.
https://www.researchgate.net/publication/280572954_Design_of_Building_Elements_in_Traditional_Houses_A_Case_Study_in_KirklareliTurkey
