Have a personal or library account? Click to login
Western Asian and Northern African residential building stocks: archetype analysis Cover

Western Asian and Northern African residential building stocks: archetype analysis

Open Access
|May 2025

References

  1. 1Ahmed, W., Asif, M., & Alrashed, F. (2019). Application of building performance simulation to design energy-efficient homes: Case study from Saudi Arabia. Sustainability (Switzerland), 11(21), 6048. 10.3390/su11216048
  2. 2Akin, S., Eghbali, A., Nwagwu, C., & Hertwich, E. (2024). Archetype-based life-cycle assessment of national residential building stocks: Resource use and greenhouse gas emissions in Western Asia and Northern Africa. Zenodo. 10.5281/zenodo.13380340
  3. 3Akin, S., Nwagwu, C. C., Heeren, N., & Hertwich, E. (2023). Archetype-based energy and material use estimation for the residential buildings in Arab Gulf countries. Energy and Buildings, 298, 113537. 10.1016/j.enbuild.2023.113537
  4. 4Al-Hinai, H., Batty, W. J., & Probert, S. D. (1993). Vernacular architecture of Oman: Features that enhance thermal comfort achieved within buildings. Applied Energy, 44(3), 233244. 10.1016/0306-2619(93)90019-L
  5. 5Al-Mumin, A., Khattab, O., & Sridhar, G. (2003). Occupants’ behavior and activity patterns influencing the energy consumption in the Kuwaiti residences. Energy and Buildings, 35(6), 549559. 10.1016/S0378-7788(02)00167-6
  6. 6Alnuaimi, A. S. (2016). Structural overdesign of villa in Oman. In Lecture notes in engineering and computer science, 2224, 709713. https://squ.elsevierpure.com/en/publications/structural-overdesign-of-villa-in-oman
  7. 7Ameer, B., & Krarti, M. (2016). Impact of subsidization on high energy performance designs for Kuwaiti residential buildings. Energy and Buildings, 116(March), 249262. 10.1016/j.enbuild.2016.01.018
  8. 8Ayçam, İ., Akalp, S., & Görgülü, L. S. (2020). The application of courtyard and settlement layouts of the traditional Diyarbakır houses to contemporary houses: A case study on the analysis of energy performance. Energies, 13(3), 587. 10.3390/en13030587
  9. 9Biehl, K. S. (2014). Migration, urban space and diversity: A case from İstanbul. Insight Turkey, 16(4), 5563. https://www.insightturkey.com/file/218/migration-urban-space-and-diversity-a-case-from-istanbul-fall-2014
  10. 10BSI. (2011). EN 15978: Sustainability of construction works: Assessment of environmental performance of buildings: Calculation method. British Standards Institution (BSI). https://knowledge.bsigroup.com/products/sustainability-of-construction-works-assessment-of-environmental-performance-of-buildings-calculation-method
  11. 11Cerezo, C., Sokol, J., AlKhaled, S., Reinhart, C., Al-Mumin, A., & Hajiah, A. (2017). Comparison of four building archetype characterization methods in urban building energy modeling (UBEM): A residential case study in Kuwait City. Energy and Buildings, 154, 321334. 10.1016/j.enbuild.2017.08.029
  12. 12Corgnati, S. P., Fabrizio, E., Filippi, M., & Monetti, V. (2013). Reference buildings for cost optimal analysis: Method of definition and application. Applied Energy, 102, 983993. 10.1016/j.apenergy.2012.06.001
  13. 13DesignBuilder Software. (2017). DesignBuilder Software Ltd—Tutorials. 2017. https://designbuilder.co.uk/
  14. 14Ecoinvent. (2024). Ecoinvent, ReCiPe 2016 v1.03, Midpoint. https://ecoinvent.org/database-login/
  15. 15El Hafdaoui, H., Khallaayoun, A., Bouarfa, I., & Ouazzani, K. (2023). Machine learning for embodied carbon life cycle assessment of buildings. Journal of Umm Al-Qura University for Engineering and Architecture, 14(3), 188200. 10.1007/s43995-023-00028-y
  16. 16Frischknecht, R., Birgisdottir, H., Chae, C. U., Lützkendorf, T., Passer, A., Alsema, E., Balouktsi, M. et al. (2019). Comparison of the environmental assessment of an identical office building with national methods. In IOP conference series: Earth and environmental science, 323. 10.1088/1755-1315/323/1/012037
  17. 17Heeren, N., Nistad, A., Krych, K., & Akin, S. (2023). Nheeren/BuildME. GitHub. 2023. https://github.com/NTNU-IndEcol/BuildME
  18. 18Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 22(2), 138147. 10.1007/s11367-016-1246-y
  19. 19IEA. (2020a). Countries & regions—IEA. 2020. International Energy Agency (IEA). https://www.iea.org/countries
  20. 20IEA. (2020b). World energy statistics and balances 2020. International Energy Agency (IEA). https://www.iea.org/data-and-statistics/data-product/world-energy-balances
  21. 21IEA. (2023). Energy efficiency 2023. International Energy Agency (IEA). https://www.iea.org/reports/energy-efficiency-2023
  22. 22Imam, A. A., Abusorrah, A., & Marzband, M. (2024). Potentials and opportunities of solar PV and wind energy sources in Saudi Arabia: Land suitability, techno-socio-economic feasibility, and future variability. Results in Engineering, 21, 101785. 10.1016/j.rineng.2024.101785
  23. 23IPCC. (2014). Climate change 2013—The physical science basis: Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press for the Intergovernmental Panel on Climate Change (IPCC). 10.1017/CBO9781107415324
  24. 24IPCC. (2021). Climate change 2021: The physical science basis. Intergovernmental Panel on Climate Change (IPCC). https://www.ipcc.ch/report/ar6/wg1/
  25. 25ISO. (2006a). ISO 14040:2006: Environmental management—Life cycle assessment—Principles and framework. International Organization for Standardization (ISO). https://www.iso.org/standard/37456.html
  26. 26ISO. (2006b). 14044: Environmental management—Life cycle assessment—Requirements and guidelines. International Organization for Standardization (ISO). https://www.iso.org/standard/38498.html
  27. 27Iyer, A. V., Rao, N. D., & Hertwich, E. G. (2023). Review of urban building types and their energy use and carbon emissions in life-cycle analyses from low- and middle-income countries. Environmental Science & Technology, 57(26), 94459458. 10.1021/acs.est.2c06418
  28. 28Jaber, S., & Ajib, S. (2011). Optimum, technical and energy efficiency design of residential building in Mediterranean region. Energy and Buildings, 43(8), 18291834. 10.1016/j.enbuild.2011.03.024
  29. 29Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G., von Bloh, W., Brovkin, V., et al. (2013). Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmospheric Chemistry and Physics, 13(5), 27932825. 10.5194/acp-13-2793-2013
  30. 30Kirimtat, A., & Krejcar, O. (2018). A review of infrared thermography for the investigation of building envelopes: Advances and prospects. Energy and Buildings, 176(October), 390406. 10.1016/j.enbuild.2018.07.052
  31. 31Krarti, M., & Dubey, K. (2018). Review analysis of economic and environmental benefits of improving energy efficiency for UAE building stock. Renewable and Sustainable Energy Reviews, 82(February), 1424. 10.1016/j.rser.2017.09.013
  32. 32Krych, K., Heeren, N., & Hertwich, E. G. (2021). Factors influencing the life-cycle GHG emissions of Brazilian office buildings. Buildings and Cities, 2(1), 856873. 10.5334/bc.136
  33. 33Mata, É., Sasic Kalagasidis, A., & Johnsson, F. (2014). Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Building and Environment, 81, 270282. 10.1016/j.buildenv.2014.06.013
  34. 34Mehio-Sibai, A., Farah, R., & Dakik, H. (2017). Energy performance of residential buildings in Lebanon: Current status and future prospects. Energy Procedia, 119, 894903. https://www.sciencedirect.com/science/article/pii/S1876610217312197
  35. 35Meteotest, AG. (2023). Meteonorm Software. 2023. https://meteonorm.com/en/
  36. 36Nayak, B. K., Sansaniwal, S. K., Mathur, J., Chandra, T., Garg, V., & Gupta, R. (2023). A review of residential building archetypes and their applications to study building energy consumption. Architectural Science Review, 66(3), 187200. 10.1080/00038628.2023.2193167
  37. 37Nejat, P., Jomehzadeh, F., Taheri, M. M., Gohari, M., & Muhd, M. Z. (2015). A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and Sustainable Energy Reviews, 43, 843862. 10.1016/j.rser.2014.11.066
  38. 38Nutkiewicz, A., Jain, R. K., & Bardhan, R. (2018). Energy modeling of urban informal settlement redevelopment: Exploring design parameters for optimal thermal comfort in Dharavi, Mumbai, India. Applied Energy, 231, 433445. 10.1016/j.apenergy.2018.09.002
  39. 39Our World in Data. (2022). Share of the urban population living in slums, 2022. https://ourworldindata.org/grapher/share-of-urban-population-living-in-slums
  40. 40Park, J., Kim, T., & Lee, C. S. (2019). Development of thermal comfort-based controller and potential reduction of the cooling energy consumption of a residential building in Kuwait. Energies, 12(17), 3348. 10.3390/en12173348
  41. 41Pauliuk, S., & Heeren, N. (2020). ODYM—An open software framework for studying dynamic material systems: Principles, implementation, and data structures. Journal of Industrial Ecology, 24(3), 446458. 10.1111/jiec.12952
  42. 42Ramani, A., & García De Soto, B. (2021). Estidama and the Pearl Rating System: A comprehensive review and alignment with LCA. Sustainability (Switzerland), 13(9), 131. 10.3390/su13095041
  43. 43Republic of Armenia. (2016). Construction norms RACN 24-01-2016 ‘Thermal protection of buildings’. https://nature-ic.am/en/publications/%22thermal-protection-of-buildings%22-racn-24-01-2016
  44. 44Röck, M., Mendes Saade, M. R., Balouktsi, M., Rasmussen, F. N., Birgisdottir, H., Frischknecht, R., Habert, G., Lützkendorf, T., & Passer, A. (2020). Embodied GHG emissions of buildings—The hidden challenge for effective climate change mitigation. Applied Energy, 258(January), 114107. 10.1016/j.apenergy.2019.114107
  45. 45Sandberg, N. H., Sartori, I., Heidrich, O., Dawson, R., Dascalaki, E., Dimitriou, S., Vimm-r, T., et al. (2016). Dynamic building stock modelling: Application to 11 European countries to support the energy efficiency and retrofit ambitions of the EU. Energy and Buildings, 132, 2638. 10.1016/j.enbuild.2016.05.100
  46. 46Schimschar, S., Boermans, T., Kretschmer, D., Offermann, M., & Ashok, J. (2016). U-value maps Turkey—Applying the comparative methodology framework for cost-optimality in the context of the EPBD. Final report. Ecofys. https://www.izoder.org.tr/dosyalar/haberler/Turkiye-U-degerleri-haritasi-raporu-2016-Ingilizce.pdf
  47. 47Taleb, H. M., & Sharples, S. (2011). Developing sustainable residential buildings in Saudi Arabia: A case study. Applied Energy, 88(1), 383391. 10.1016/j.apenergy.2010.07.029
  48. 48UNDESA Sustainable Development. (2023). The 17 Goals. United Nations Department of Economic and Social Affairs (UNDESA) Sustainable Development. https://sdgs.un.org/goals
  49. 49UNEP. (2022). Global resources outlook 2022: Materials and the sustainable development goals. United Nations Environment Programme (UNDP). https://www.unep.org/resources/report/global-resources-outlook-2022
  50. 50United Nations. (2023). 2020 Energy balances. https://unstats.un.org/unsd/energystats/pubs/balance/
  51. 51Vásquez, F., Løvik, A. N., Sandberg, N. H., & Müller, D. B. (2016). Dynamic type-cohort-time approach for the analysis of energy reductions strategies in the building stock. Energy and Buildings, 111, 3755. 10.1016/j.enbuild.2015.11.018
  52. 52Vilches, A., Padura, A. B., & Huelva, M. M. (2017). Retrofitting of homes for people in fuel poverty: Approach based on household thermal comfort. Energy Policy, 100(January), 283291. 10.1016/J.ENPOL.2016.10.016
  53. 53World Bank. (2023). World Bank indicators. Data. https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD
  54. 54World Bank. (2024). Access to electricity (% of population)—Syrian Arab Republic | data. https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?locations=SY
  55. 55Yang, X., Hu, M., Tukker, A., Zhang, C., Huo, T., & Steubing, B. (2022). A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands. Applied Energy, 306, 118060. 10.1016/j.apenergy.2021.118060
  56. 56Yüksek, I. (2013). Design of building elements in traditional houses (a case study in Kırklareli/Turkey). Gazi University Journal of Science, 1(4), 5767. https://www.researchgate.net/publication/280572954_Design_of_Building_Elements_in_Traditional_Houses_A_Case_Study_in_KirklareliTurkey
DOI: https://doi.org/10.5334/bc.488 | Journal eISSN: 2632-6655
Language: English
Submitted on: Aug 30, 2024
Accepted on: May 15, 2025
Published on: May 28, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Sahin Akin, Aida Eghbali, Chibuikem Nwagwu, Edgar Hertwich, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.