Have a personal or library account? Click to login
The relevance of cut-stone to strategies for low-carbon buildings Cover

The relevance of cut-stone to strategies for low-carbon buildings

Open Access
|May 2023

References

  1. 1ADEME. (2016). Disponibilités Forestieres pour l’Energie et les Materiaux à l’Horizon 2025—Synthese de l’Etude. https://inventaire-forestier.ign.fr/IMG/pdf/disponibilites-forestieres-pour-energie-materiaux-horizon-2035-rapport.pdf
  2. 2ADEME. (2021a). Industrialisation de produits et systèmes constructifs bois et autres biosourcés. https://aides-territoires.beta.gouv.fr/aides/c090-investir-developper-industrialisation-de-prod/
  3. 3ADEME. (2021b). Prospective—Transitions 2050—Rapport. Horizons. https://librairie.ademe.fr/recherche-et-innovation/5072-prospective-transitions-2050-rapport.html
  4. 4ADEME. (2021c). Transition(s) 20250. https://librairie.ademe.fr/cadic/6531/transitions2050-rapport-compresse.pdf?modal=false
  5. 5Äijälä, O., Koistinen, A., Sved, J., Vanhatalo, K., & Väisänen, P. (2019). Metsänhoidon suositukset. Tapion julkaisuja [Recommendations for good forest management). https://tapio.fi/wp-content/uploads/2020/09/Metsanhoidon_suositukset_Tapio_2019.pdf
  6. 6Albers, A., Collet, P., Benoist, A., & Hélias, A. (2019). Data and non-linear models for the estimation of biomass growth and carbon fixation in managed forests. Data in Brief, 23, 103841. DOI: 10.1016/j.dib.2019.103841
  7. 7Arehart, J. H., Hart, J., Pomponi, F., & D’Amico, B. (2021). Carbon sequestration and storage in the built environment. Sustainable Production and Consumption, 27, 10471063. DOI: 10.1016/j.spc.2021.02.028
  8. 8Au, T. F., Maxwell, J. T., Robeson, S. M., Li, J., Siani, S. M. O., Novick, K. A., … Lenoir, J. (2022). Younger trees in the upper canopy are more sensitive but also more resilient to drought. Nature Climate Change, 12(12), 11681174. DOI: 10.1038/s41558-022-01528-w
  9. 9BBG. (2020). Déclaration Environnementale de Produit (DEP) Binderholz Cross Laminated Timber CLT BBS. EPD-BBS-20190021-IBBI1-DE. https://www.base-inies.fr/iniesV4/dist/consultation.html?id=29245
  10. 10Beerling, D. J., Leake, J. R., Long, S. P., Scholes, J. D., Ton, J., Nelson, P. N., … Hansen, J. (2018). Farming with crops and rocks to address global climate, food and soil security. Nature plants, 4(3), 138147. DOI: 10.1038/s41477-018-0108-y
  11. 11BETie. (2022a). INIES Collective Concrete EPD (id: 16422). https://www.base-inies.fr/iniesV4/dist/consultation.html?id=16422
  12. 12BETie. (2022b). Syndicat National du Beton Pret à l’Emploi. http://ns381308.ovh.net/ecobilan/presentation.html
  13. 13Bianco, I., & Blengini, G. A. (2019). Life cycle inventory of techniques for stone quarrying, cutting and finishing: Contribution to fill data gaps. Journal of Cleaner Production, 225, 684696. DOI: 10.1016/j.jclepro.2019.03.309
  14. 14Blanchet, T., Ikuno, T., Lu, X., Rybaltchenko, S., & Zaidan, G. (2021). Besoins en logements neufs. https://ecoledesponts.fr/sites/ecoledesponts.fr/files/documents/construction_neuve-rapport_final.pdf
  15. 15Blissett, R. S., & Rowson, N. A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 123. DOI: 10.1016/j.fuel.2012.03.024
  16. 16BRGM. (2022). Info-Terre data-plateform. http://infoterre.brgm.fr/viewer/MainTileForward.do
  17. 17Buttiens, K., Leroy, J., Negro, P., Thomas, J.-S. B., Edwards, K., & De Lassat, Y. (2016). The carbon cost of slag production in the blast furnace: A scientific approach. Journal of Sustainable Metallurgy, 2(1), 6272. DOI: 10.1007/s40831-016-0046-8
  18. 18Calders, K., Verbeeck, H., Burt, A., Origo, N., Nightingale, J., Malhi, Y., … Disney, M. (2022). Laser scanning reveals potential underestimation of biomass carbon in temperate forest. Ecological Solutions and Evidence, 3(4). DOI: 10.1002/2688-8319.12197
  19. 19Ceccherini, G., Duveiller, G., Grassi, G., Lemoine, G., Avitabile, V., Pilli, R., & Cescatti, A. (2020). Abrupt increase in harvested forest area over Europe after 2015. Nature, 583(7814), 7277. DOI: 10.1038/s41586-020-2438-y
  20. 20CEN. (2012). Cement—Part 1: Composition, specifications and conformity criteria for common cements (NF EN 197-1). https://www.boutique.afnor.org/en-gb/standard/nf-en-206-cn/concrete-specification-performance-production-and-conformity-national-addit/fa185553/1463
  21. 21CEN. (2014a). Core rules for the product category of construction products. In European Committee for Standardization, Sustainability of Construction Works Environmental Product Declarations (NF EN 15804 + A1). https://www.boutique.afnor.org/en-gb/standard/nf-en-15804-a1/sustainability-of-construction-works-environmental-product-declarations-cor/fa184203/1438
  22. 22CEN. (2014b). Concrete—Specification, performance, production and conformity—National addition to the standard NF EN 206 (NF EN-206/CN). https://www.boutique.afnor.org/en-gb/standard/nf-en-206-cn/concrete-specification-performance-production-and-conformity-national-addit/fa185553/1463
  23. 23CEN. (2016). Sustainability of construction works—Environmental product declarations—Core rules for the product category of construction—National addition to NF EN 15804+A1 (EN 15804+A1/CN:2016). https://www.boutique.afnor.org/en-gb/standard/nf-en-15804-cn/sustainability-of-construction-works-environmental-product-declarations-cor/fa060204/1579
  24. 24CEN. (2019). Sustainability of construction works—Environmental product declarations—Core rules for the product category of construction products (NF EN 15804 + A2) https://www.boutique.afnor.org/en-gb/standard/nf-en-15804-a2/sustainability-of-construction-works-environmental-product-declarations-cor/fa198121/84194
  25. 25CEN. (2021). Timber structures. Cross laminated timber. Requirements (NF EN 16351). https://www.boutique.afnor.org/en-gb/standard/nf-en-16351/timber-structures-cross-laminated-timber-requirements/fa192949/264713
  26. 26Cherubini, F., Strømman, A. H., & Hertwich, E. (2011). Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy. Ecological Modelling, 223(1), 5966. DOI: 10.1016/j.ecolmodel.2011.06.021
  27. 27Chiniforush, A. A., Valipour, H. R., & Ataei, A. (2021). Timber-timber composite (TTC) connections and beams: An experimental and numerical study. Construction and Building Materials, 303, 124493. DOI: 10.1016/j.conbuildmat.2021.124493
  28. 28CIMbéton. (2013). La réalisation des ouvrages en béton. Les béton; formulation, fabrication et mise en oeuvre. https://www.infociments.fr/sites/default/files/article/fichier/CT-B66.57-71.pdf
  29. 29CIRAIG. (2013). DynCO2: Dynamic carbon footprinter. CIRAIG. https://ciraig.org/index.php/project/dynco2-dynamic-carbon-footprinter/
  30. 30CITEPA. (2022). Rapport National d’Inventaire pour la France au titre de la Convention cadre des Nations Unies sur les Changements Climatiques et du Protocole de Kyoto. https://www.citepa.org/wp-content/uploads/publications/ccnucc/CCNUCC_france_2022_d.pdf
  31. 31CNPF, & Fransylva. (2021). Les chiffres clés de la foret privée francaise. https://franceboisforet.fr/wp-content/uploads/2021/04/Brochure_chiffresClesForetPrivee_2021_PageApage_BD.pdf
  32. 32Crishna, N., Banfill, P. F. G., & Goodsir, S. (2011). Embodied energy and CO2 in UK dimension stone. Resources, Conservation and Recycling, 55(12), 12651273. DOI: 10.1016/j.resconrec.2011.06.014
  33. 33CTMNC. (2022). INIES Collective brick masonry EPD (id: 29406). https://www.base-inies.fr/iniesV4/dist/consultation.html?id=29406
  34. 34DE-Bois. (2022a). Configurateur FDES DE-bois. https://de-bois.fr/
  35. 35DE-bois. (2022b). INIES Collective CLT EPD (id: 27250). https://www.base-inies.fr/iniesV4/dist/consultation.html?id=27250
  36. 36de Toldi, T., Craig, S., & Sushama, L. (2022). Internal thermal mass for passive cooling and ventilation: Adaptive comfort limits, ideal quantities, embodied carbon. Buildings & Cities, 3(1), 4267. DOI: 10.5334/bc.156
  37. 37Delemontey, Y. (2007a). Formes et figures de la préfabrication en France, 1947–1952. Société française d’histoire urbaine | «Histoire urbaine», 2007/3 (no. 20), 1538. DOI: 10.3917/rhu.020.0015
  38. 38Delemontey, Y. (2007b). Industrialiser la pierre. AMC, no. 172(September).
  39. 39DHUP. (2022). Rapport sur la règle de comptabilisation des impacts environnementaux des laitiers de haut fourneau. DHUP.
  40. 40EC3. (2020). Building transparency. EC3. https://buildingtransparency.org/ec3
  41. 41EFSOS. (2011). The European Forest Sector Outlook Study II 2010–2030. https://unece.org/DAM/timber/publications/sp-28.pdf
  42. 42Egoin. (2018). Document Technique d’Application Panneaux EGO-CLT. Référence Avis Technique 3.3/18-961_V1. http://www.cstb.fr/pdf/atec/GS03-D/AD318961_V1.pdf
  43. 43Environmental Code. (2023). Environmental Code. Article R.515-3. https://www.legifrance.gouv.fr/codes/article_lc/LEGIARTI000046079932
  44. 44Eriksson, E., Gillespie, A. R., Gustavsson, L., Langvall, O., Olsson, M., Sathre, R., & Stendahl, J. (2007). Integrated carbon analysis of forest management practices and wood substitution. Canadian Journal of Forest Research, 37(3), 671681. DOI: 10.1139/X06-257
  45. 45Franklin, J. F., Spies, T. A., Pelt, R. V., Carey, A. B., Thornburgh, D. A., Berg, D. R., … Chen, J. (2002). Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management, 155(1), 399423. DOI: 10.1016/S0378-1127(01)00575-8
  46. 46Gadioli, M. C. B., Castro, N. F., Pazeto, A. A., Wandermurem, C. R., de Almeida, P. F., & Tavares, CETEM. Cachoeiro de Itapemirim. (2012). Life-cycle inventory of dimension stones, Brazil. https://www.cetem.gov.br/antigo/images/palestras/2012/globalstone/9_LCA_Borlini.pdf
  47. 47Göswein, V., Arehart, J., Phan-huy, C., Pomponi, F., & Habert, G. (2022). Barriers and opportunities of fast-growing biobased material use in buildings. Buildings & Cities, 3(1), 745755. DOI: 10.5334/bc.254
  48. 48Göswein, V., Silvestre, J. D., Sousa Monteiro, C., Habert, G., Freire, F., & Pittau, F. (2021). Influence of material choice, renovation rate, and electricity grid to achieve a Paris Agreement-compatible building stock: A Portuguese case study. Building and Environment, 195, 107773. DOI: 10.1016/j.buildenv.2021.107773
  49. 49Gouvernment Français. (2015). Arrêté du 31 août 2015 relatif à la vérification par tierce partie indépendante des déclarations environnementales des produits de construction. Journal Officiel. https://www.legifrance.gouv.fr/loda/id/JORFTEXT000031276723
  50. 50Gouvernement Français. (2022). Code de l’environnement. Gouvernement Français. https://www.legifrance.gouv.fr/codes/texte_lc/LEGITEXT000006074220/
  51. 51Grantham, H. S., Duncan, A., Evans, T. D., Jones, K. R., Beyer, H. L., Schuster, R., … Watson, J. E. M. (2020). Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications, 11(1), 5978. DOI: 10.1038/s41467-020-19493-3
  52. 52Guest, G., Bright, R. M., Cherubini, F., & Strømman, A. H. (2013). Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems. Environmental Impact Assessment Review, 43, 2130. DOI: 10.1016/j.eiar.2013.05.002
  53. 53Guiraud, P. (2018). Le béton prêt à l’emploi/infociments. https://www.infociments.fr/betons/le-beton-pret-lemploi
  54. 54Gussoni, M. (2017). Stone sector 2017 trade and innovation.
  55. 55Hawkins, W., Cooper, S., Allen, S., Roynon, J., & Ibell, T. (2021). Embodied carbon assessment using a dynamic climate model: Case-study comparison of a concrete, steel and timber building structure. Structures, 33, 9098. DOI: 10.1016/j.istruc.2020.12.013
  56. 56INIES. (2020). EPD Murs en pierre naturelle ALBAMIEL D’épaisseur de 15 à 45 cm (v.1.1). https://www.base-inies.fr/iniesV4/dist/consultation.html?id=24308
  57. 57INIES. (2022a). Base de données environnementales et sanitaires de référence pour le bâtiment et la RE2020. https://www.inies.fr/
  58. 58INIES. (2022b). Configurateurs reconnus par INIES. https://www.inies.fr/inies-et-ses-donnees/les-configurateurs/
  59. 59INSEE. (2020). Répartition du parc de logements selon la catégorie. https://www.insee.fr/fr/statistiques/4985385#consulter
  60. 60INSITU. (2022). Tri Selectif. Tours Habitat, OPH de Tours Metropole Val de Loire. https://www.tours-habitat.fr/wp-fi/wp-content/uploads/2022/03/IN_SITU_FEV_2022_WEB.pdf
  61. 61Ioannidou, D. V. (2016). On sustainability aspects through the prism of stone as a material for construction. Research Gate. DOI: 10.3929/ethz-a-010750082
  62. 62Ioannidou, D., Zerbi, S., García de Soto, B., & Habert, G. (2018). Where does the money go? Economic flow analysis of construction projects. Building Research & Information, 46(4), 348366. DOI: 10.1080/09613218.2017.1294419
  63. 63Ioannidou, D., Zerbi, S., & Habert, G. (2014). When more is better—Comparative LCA of wall systems with stone. Building and Environment, 82, 628639. DOI: 10.1016/j.buildenv.2014.10.004
  64. 64IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [ed. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou]. Cambridge University Press for the Intergovernmental Panel on Climate Change (IPCC). https://www.ipcc.ch/report/ar6/wg1/
  65. 65ISO. (2020). Environmental labels and declarations—Type III environmental declarations—Principles and procedures. In ISO 14025:2006. https://www.iso.org/standard/38131.html
  66. 66ISO. (2022). Environmental management—Life cycle assessment—Requirements and guidelines. In ISO 14044:2006. https://www.iso.org/standard/38498.html
  67. 67ISO. (2023). Sustainability in buildings and civil engineering works—Core rules for environmental product declarations of construction products and services. In ISO 21930:2017. https://www.iso.org/standard/61694.html
  68. 68ISO-10456. (2007). Building materials and products—Hygrothermal properties. ICS: 91.120.10 Thermal insulation of buildings. https://www.iso.org/standard/40966.html
  69. 69Kellomäki, S., Väisänen, H., Kirschbaum, M. U. F., Kirsikka-Aho, S., & Peltola, H. (2021). Effects of different management options of Norway spruce on radiative forcing through changes in carbon stocks and albedo. Forestry, 94(4), 588597. DOI: 10.1093/forestry/cpab010
  70. 70Khalifa, A. Z., Cizer, Ö., Pontikes, Y., Heath, A., Patureau, P., Bernal, S. A., & Marsh, A. T. M. (2020). Advances in alkali-activation of clay minerals. Cement and Concrete Research, 132, 106050. DOI: 10.1016/j.cemconres.2020.106050
  71. 71KLH. (2013). Principes constructifs logements collectifs. https://www.lignatec.fr/r/pdf/KLH-Principes-constructifs-Logements-collectifs-CLT.pdf
  72. 72Légifrance. (1999). Arrêté du 30 juin 1999 relatif aux caractéristiques acoustiques des bâtiments d’habitation. https://www.legifrance.gouv.fr/loda/id/JORFTEXT000000211449
  73. 73Légifrance. (2013a). LOI n° 2013-61 du 18 janvier 2013 relative à la mobilisation du foncier public en faveur du logement et au renforcement des obligations de production de logement social (1). https://www.legifrance.gouv.fr/loda/id/JORFTEXT000026954420/
  74. 74Légifrance. (2013b). LOI n° 2013-569 du 1er juillet 2013 habilitant le Gouvernement à adopter des mesures de nature législative pour accélérer les projets de construction (1). Légifrance. https://www.legifrance.gouv.fr/loda/id/JORFTEXT000027646242/
  75. 75Légifrance. (2021). LOI n° 2021-1104 du 22 août 2021 portant lutte contre le dérèglement climatique et renforcement de la résilience face à ses effets (1). https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000043956924
  76. 76Levasseur, A., Lesage, P., Margni, M., Deschênes, L., & Samson, R. (2010). Considering time in LCA: Dynamic LCA and its application to global warming impact assessments. Environmental Science & Technology, 44(8), 31693174. DOI: 10.1021/es9030003
  77. 77Levasseur, A., Lesage, P., Margni, M., & Samson, R. (2013). Biogenic carbon and temporary storage addressed with dynamic life cycle assessment. Journal of Industrial Ecology, 17(1), 117128. DOI: 10.1111/j.1530-9290.2012.00503.x
  78. 78Li, Y. & Ren, S. (2011). Acoustic and thermal insulating materials. In Building decorative materials (pp. 359374). Woodhead. DOI: 10.1533/9780857092588.359
  79. 79Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., … Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698709. DOI: 10.1016/j.foreco.2009.09.023
  80. 80Loga, T., Stein, B., & Diefenbach, N. (2016). TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable. Energy and Buildings, 132, 412. DOI: 10.1016/j.enbuild.2016.06.094
  81. 81Loyer, F. (1987). Paris XIXe siècle. L’immeuble et la rue. Fernand Hazan.
  82. 82Luyssaert, S., Marie, G., Valade, A., Chen, Y.-Y., Njakou Djomo, S., Ryder, J., … McGrath, M. J. (2018). Trade-offs in using European forests to meet climate objectives. Nature, 562(7726), 259262. DOI: 10.1038/s41586-018-0577-1
  83. 83MCTRCT. (2014). 50 mesures de simplification pour la Construction. Ministere de la Cohésion des Territoires et des Relations avec les Collectivités Territoriales (MCTRCT). https://www.cohesion-territoires.gouv.fr/50-mesures-de-simplification-pour-la-construction?
  84. 84MEDDE (Ministere de l’écologie, du développement durable et de l’énergie) & ADEME. (2022). Fiches Actions—Transport de marchandises. https://expertises.ademe.fr/sites/default/files/assets/documents/20140414_ObjectifCO2-FichesActions_0.pdf
  85. 85MEEM. (2017). Datalab-Essentiel: Entreprises du BTP. Ministère de l’environnement, de l’énergie et de la mer, en charge des relations internationales sur le climat (MEEM). https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2018-10/datalab-essentiel-96-btp-mars2017-b.pdf
  86. 86Meinshausen, M., & Nicholls, Z. (2022). GWP* is a model, not a metric. Environmental Research Letters, 17(4), 041002. DOI: 10.1088/1748-9326/ac5930
  87. 87Mendoza, J.-M. F., Feced, M., Feijoo, G., Josa, A., Gabarrell, X., & Rieradevall, J. (2014). Life cycle inventory analysis of granite production from cradle to gate. International Journal of Life Cycle Assessment, 19(1), 153165. DOI: 10.1007/s11367-013-0637-6
  88. 88Mendoza, J.-M. F., Oliver-Soláa, J., Gabarrell, X., Josa, A., & Rieradevall, J. (2012). Life cycle assessment of granite application in sidewalks. International Journal of Life Cycle Assessment, 17(5), 580592. DOI: 10.1007/s11367-012-0391-1
  89. 89Mequignon, M., Adolphe, L., Thellier, F., & Ait Haddou, H. (2013). Impact of the lifespan of building external walls on greenhouse gas index. Building and Environment, 59, 654661. DOI: 10.1016/j.buildenv.2012.09.020
  90. 90Mikoláš, M., Svitok, M., Bače, R., Meigs, G. W., Keeton, W. S., Keith, H., … Svoboda, M. (2021). Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proceedings. Biological sciences, 288(1961), 20211631. DOI: 10.1098/rspb.2021.1631
  91. 91Mishra, A., Humpenöder, F., Churkina, G., Reyer, C. P. O., Beier, F., Bodirsky, B. L., … Popp, A. (2022). Land use change and carbon emissions of a transformation to timber cities. Nature Communications, 13(1), 4889. DOI: 10.1038/s41467-022-32244-w
  92. 92Mitchell, R., & Natarajan, S. (2019). Overheating risk in Passivhaus dwellings. Building Services Engineering Research and Technology, 40(4), 446469. DOI: 10.1177/0143624419842006
  93. 93Moe, K. (2014). Insulating modernism: Isolated and non-isolated thermodynamics in architecture. De Gruyter. DOI: 10.1515/9783038213215
  94. 94Moomaw, W. R., Masino, S. A., & Faison, E. K. (2019). Intact forests in the United States: Proforestation mitigates climate change and serves the greatest good. Frontiers in Forests and Global Change, 2. DOI: 10.3389/ffgc.2019.00027
  95. 95Moré, F. B., Galindro, B. M., & Soares, S. R. (2022a). Assessing the completeness and comparability of environmental product declarations. Journal of Cleaner Production, 375. DOI: 10.1016/j.jclepro.2022.133999
  96. 96Moré, F. B., Galindro, B. M., & Soares, S. R. (2022b). Assessing the completeness and comparability of environmental product declarations. Journal of Cleaner Production, 375, 133999. DOI: 10.1016/j.jclepro.2022.133999
  97. 97MTE. (2020). Stratégie Nationale de Mobilisation de la Biomasse (SNMB). Ministere de la Transition Ecologique (MTE). https://www.ecologie.gouv.fr/sites/default/files/Strat%C3%A9gie%20Nationale%20de%20Mobilisation%20de%20la%20Biomasse.pdf
  98. 98MTE. (2021). Dossier de Presse -DP: RE2020, Eco-construire pour le confort de tous. Ministere de la Transition Ecologique (MTE). https://www.ecologie.gouv.fr/sites/default/files/2021.02.18_DP_RE2020_EcoConstruire_0.pdf
  99. 99MTECT. (2020). Filière bois construction. Ministere de la transition Ecologique et de la Cohesion des Territoires (MTECT). https://www.ecologie.gouv.fr/filiere-bois-construction
  100. 100MTECT. (2021a). Bilan de la circulation en 2020—Section G3b. Ministere de la transition Ecologique et de la Cohesion des Territoires (MTECT). https://www.statistiques.developpement-durable.gouv.fr/bilan-de-la-circulation-en-2020
  101. 101MTECT. (2021b). France Relance: publication de la feuille de route de décarbonation de la filière Ciment. Ministere de la transition Ecologique et de la Cohesion des Territoires (MTECT). https://www.ecologie.gouv.fr/france-relance-publication-feuille-route-decarbonation-filiere-ciment
  102. 102MTES. (2020). Strategie Nationale Bas Carbone (SNBC). Ministère de la transition écologique et solidaire (MTES). https://www.ecologie.gouv.fr/strategie-nationale-bas-carbone-snbc
  103. 103NF EN. (2014). Round and sawn timber—Environmental Product Declarations—Product category rules for wood and wood-based products for use in construction. National standards and national normative documents (NF EN 16485). https://www.boutique.afnor.org/en-gb/standard/nf-en-16485/round-and-sawn-timber-environmental-product-declarations-product-category-r/fa175112/43390
  104. 104Nicoletti, G. M., Notarnicola, B., & Tassielli, G. (2002). Comparative life cycle assessment of flooring materials: ceramic versus marble tiles. Journal of Cleaner Production, 10(3), 283296. DOI: 10.1016/S0959-6526(01)00028-2
  105. 105NSC. (2022). Natural stone sustainability standard, sustainable production of natural dimension stone. In ANSI/NSC 373. https://naturalstonecouncil.org/product/ansi-nsc-373-sustainability-standard
  106. 106PDP. (2021). Doctrine pour la construction des immeubles en materiaux biosourcés et combustibles. https://www.prefecturedepolice.interieur.gouv.fr/sites/default/files/Documents/210720_Doctrine_bois_PP.pdf
  107. 107Peñaloza, D., Erlandsson, M., & Falk, A. (2016). Exploring the climate impact effects of increased use of bio-based materials in buildings. Construction and Building Materials, 125, 219226. DOI: 10.1016/j.conbuildmat.2016.08.041
  108. 108Pestre, T. (2021). Natural stone in a context of environmental regulatory evolution of the construction, the study of heat and moisture transfers in building envelope components. Université d’Artois. https://hal.archives-ouvertes.fr/tel-03521752
  109. 109Pittau, F., Krause, F., Lumia, G., & Habert, G. (2018). Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Building and Environment, 129, 117129. DOI: 10.1016/j.buildenv.2017.12.006
  110. 110Pittau, F., Lumia, G., Heeren, N., Iannaccone, G., & Habert, G. (2019). Retrofit as a carbon sink: The carbon storage potentials of the EU housing stock. Journal of Cleaner Production, 214, 365376. DOI: 10.1016/j.jclepro.2018.12.304
  111. 111RE2020. (2021). RE2020: Arrêté du 4 août 2021 relatif aux exigences de performance énergétique et environnementale des constructions de bâtiments en France métropolitaine et portant approbation de la méthode de calcul prévue à l’article R. 172-6 du code de la construction et de l’habitation. https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000043877196
  112. 112RTE. (2020). Energy Pathways to 2050. https://assets.rte-france.com/prod/public/2022-01/Energy%20pathways%202050_Key%20results.pdf
  113. 113Seely, B., Welham, C., & Kimmins, H. (2002). Carbon sequestration in a boreal forest ecosystem: Results from the ecosystem simulation model, FORECAST. Forest Ecology and Management, 169(1–2), 123135. DOI: 10.1016/S0378-1127(02)00303-1
  114. 114Sitadel2. (2022). Sitadel2 Database. Climate Change Statistics Database. https://www.statistiques.developpement-durable.gouv.fr/la-base-de-donnees-sitadel2-methodologie
  115. 115SNROC, CTMNC, & MEDDE. (2014). Mémento sur l’industrie française des roches ornementales & de construction. https://www.mineralinfo.fr/sites/default/files/documents/2021-03/ROC_rp-62417-fr_2014.pdf
  116. 116Stephenson, N. L., Das, A. J., Condit, R., Russo, S. E., Baker, P. J., Beckman, N. G., … Zavala, M. A. (2014). Rate of tree carbon accumulation increases continuously with tree size. Nature, 507(7490), 9093. DOI: 10.1038/nature12914
  117. 117Traverso, M., Rizzo, G., & Finkbeiner, M. (2010). Environmental performance of building materials: Life cycle assessment of a typical Sicilian marble. International Journal of Life Cycle Assessment, 15(1), 104114. DOI: 10.1007/s11367-009-0135-z
  118. 118UT. (2009). Center for clean products: A life-cycle inventory of granite dimension stone quarrying and processing. UT. https://www.marble-institute.com/pdfs/Granite_LCIv2.pdf
  119. 119Vallet, P., Dhôte, J.-F., Moguédec, G. L., Ravart, M., & Pignard, G. (2006). Development of total aboveground volume equations for seven important forest tree species in France. Forest Ecology and Management, 229(1), 98110. DOI: 10.1016/j.foreco.2006.03.013
  120. 120VEMA. (2020). Chiffres clés—Filières d’usage—Bois d’œuvre. https://vem-fb.fr/index.php/chiffres-cles/filieres-d-usage
  121. 121Ventura, A. (2022). Conceptual issue of the dynamic GWP indicator and solution. International Journal of Life Cycle Assessment. DOI: 10.1007/s11367-022-02028-x
  122. 122Waldman, B., Huang, M., & Simonen, K. (2020). Embodied carbon in construction materials: A framework for quantifying data quality in EPDs. Buildings & Cities, 1(1), 625636. DOI: 10.5334/bc.31
  123. 123Wang, R., Lu, S., Feng, W., & Xu, B. (2021). Tradeoff between heating energy demand in winter and indoor overheating risk in summer constrained by building standards. Building Simulation, 14(4), 9871003. DOI: 10.1007/s12273-020-0719-x
  124. 124Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2021). Ecoinvent database version 3.8. International Journal of Life Cycle Assessment, 21(9), 12181230. DOI: 10.1007/s11367-016-1087-8
  125. 125Zerbi, S. (2011). Construction en pierre massive en Suisse. EPFL. https://infoscience.epfl.ch/record/162262/files/EPFL_TH4999.pdf
DOI: https://doi.org/10.5334/bc.278 | Journal eISSN: 2632-6655
Language: English
Submitted on: Nov 24, 2022
Accepted on: Apr 30, 2023
Published on: May 31, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Timothée de Toldi, Tristan Pestre, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.