References
- 1Chatzipoulka, C., & Nikolopoulou, M. (2018). Urban geometry, SVF and insolation of open spaces: London and Paris. Building Research & Information, 46(8), 881–898. DOI: 10.1080/09613218.2018.1463015
- 2Chatzidimitriou, A., & Yannas, S. (2017). Street canyon design and improvement potential for urban open spaces; the influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustainable Cities and Society, 33, 85–101. DOI: 10.1016/j.scs.2017.05.019
- 3Cheung, P. K., & Jim, C. Y. (2018). Comparing the cooling effects of a tree and a concrete shelter using PET and UTCI. Building and Environment, 130, 49–61. DOI: 10.1016/j.buildenv.2017.12.013
- 4Daniel, M., Lemonsu, A., Déqué, M., Somot, S., Alias, A., & Masson, V. (2018). Benefits of explicit urban parameterization in regional climate modelling to study climate and city interactions. Climate Dynamics, 52, 2745–2764. DOI: 10.1007/s00382-018-4289-x
- 5Emmanuel, R. (2005). An urban approach to climate sensitive design: Strategies for the tropics. Taylor & Francis.
- 6Fellini, S., Ridolfi, L., & Salizzoni, P. (2020). Street canyon ventilation: Combined effect of cross-section geometry and wall heating. Quarterly Journal of the Royal Meteorological Society, 146, 2347–2367. DOI: 10.1002/qj.3795
- 7Freitag, B. M., Nair, U. S., & Niyogi, D. (2018). Urban modification of convection and rainfall in complex terrain. Geophysical Research Letters, 45, 2507–2515. DOI: 10.1002/2017GL076834
- 8Futcher, J., Mills, G., & Emmanuel, R. (2018). Interdependent energy relationships between buildings at the street scale. Building Research & Information, 46(8), 829–844. DOI: 10.1080/09613218.2018.1499995
- 9Giridharan, R., & Emmanuel, R. (2018). The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: A review. Sustainable Cities and Society, 40, 677–687. DOI: 10.1016/j.scs.2018.01.024
- 10Golroudbary, V. R., Zeng, Y., Mannaerts, C. M., & Su, Z. (2018). Urban impacts on air temperature and precipitation over The Netherlands. Climate Research, 75, 95–109. DOI: 10.3354/cr01512
- 11Gunawardena, K. R., Wells, M. J., & Kershaw, T. (2017). Utilising green and blue space to mitigate urban heat island intensity. Science of the Total Environment, 584–585, 1040–1055. DOI: 10.1016/j.scitotenv.2017.01.158
- 12Guo, C., Buccolieri, R., & Gao, Z. (2019). Characterizing the morphology of real street models and modelling its effect on thermal environment. Energy and Buildings, 203, 109433. DOI: 10.1016/j.enbuild.2019.109433
- 13Hajat, S., & Kosatky, T. (2010). Heat-related mortality: A review and exploration of heterogeneity. Journal of Epidemiology and Community Health, 64(9), 753–760. DOI: 10.1136/jech.2009.087999
- 14Hatvani-Kovacs, G., Bush, J., Sharifi, E., & Boland, J. (2018). Policy recommendations to increase urban heat stress resilience. Urban Climate, 25, 51–63. DOI: 10.1016/j.uclim.2018.05.001
- 15Heris, M. P., Middel, A., & Muller, B. (2020). Impacts of form and design policies on urban microclimate: Assessment of zoning and design guideline choices in urban redevelopment projects. Landscape and Urban Planning, 202, 103870. DOI: 10.1016/j.landurbplan.2020.103870
- 16Hong Kong Government. (2006). Housing, Planning and Lands Bureau (Technical Circular No. 1/06)
http://www.devb.gov.hk/filemanager/technicalcirculars/en/upload/15/1/jtc-2006-01-0-1.pdf - 17Hoverter, S. P. (2012). Adapting to urban heat: A tool kit for local governments. Georgetown Climate Center.
https://www.georgetownclimate.org/files/report/Urban%20Heat%20Toolkit_9.6.pdf - 18Jamei, E., Rajagopalan, P., Seyedmahmoudian, M., & Jamei, Y. (2016). Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews, 54, 1002–1017. DOI: 10.1016/j.rser.2015.10.104
- 19Katzfey, J., Schlünzen, H., Hoffmann, P., & Thatcher, M. (2020). How an urban parameterization affects a high-resolution global climate simulation. Quarterly Journal of the Royal Meteorological Society, 146, 3808–3829. DOI: 10.1002/qj.3874
- 20Kleerekoper, L., Taleghani, M., Dobbelsteen, A. v. d., & Hordijk, T. (2017). Urban measures for hot weather conditions in a temperate climate condition: A review study. Renewable and Sustainable Energy Reviews, 75, 515–533. DOI: 10.1016/j.rser.2016.11.019
- 21Kolokotroni, M., Davies, M., Croxford, B., Bhuiyan, S., & Mavrogianni, A. (2010). A validated methodology for the prediction of heating and cooling energy demand for buildings within the urban heat island: Case-study of London. Solar Energy, 84, 2246–2255. DOI: 10.1016/j.solener.2010.08.002
- 22Peng, F., Wong, M.-S., Ho, H.-C., Nichol, J., & Chan, P. W. (2017). Reconstruction of historical datasets for analysing spatiotemporal influence of built environment on urban microclimates across a compact city. Building and Environment, 123, 649–660. DOI: 10.1016/j.buildenv.2017.07.038
- 23Phelan, P. E., Kaloush, K., Miner, M., Golden, J., Phelan, B., Silva, H.,
III. , & Taylor, R. A. (2015). Urban heat island: Mechanisms, implications, and possible remedies. Annual Review of Environment and Resources, 40, 285–307. DOI: 10.1146/annurev-environ-102014-021155 - 24Pomerantz, M. (2018). Are cooler surfaces a cost–effect mitigation of urban heat islands? Urban Climate, 24, 393–397. DOI: 10.1016/j.uclim.2017.04.009
- 25Ren, C., Ng, E. Y.-y., & Katzschner, L. (2011). Urban climatic map studies: A review. International Journal of Climatology, 31, 2213–2233. DOI: 10.1002/joc.2237
- 26Rohat, G., Goyette, S., & Flacke, J. (2018). Characterization of European cities’ climate shift—An exploratory study based on climate analogues. International Journal of Climate Change Strategies and Management, 10(3), 428–452. DOI: 10.1108/IJCCSM-05-2017-0108
- 27Salvati, A., Monti, P., Roura, H. C., & Cecere, C. (2019). Climatic performance of urban textures: Analysis tools for a Mediterranean urban context. Energy and Buildings, 185, 162–179. DOI: 10.1016/j.enbuild.2018.12.024
- 28Santamouris, M. (2014). Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682–703. DOI: 10.1016/j.solener.2012.07.003
- 29Skelhorn, C. P., Lindley, S., & Levermore, G. (2018). Urban greening and the UHI: Seasonal trade-offs in heating and cooling energy consumption in Manchester, UK. Urban Climate, 23, 173–187. DOI: 10.1016/j.uclim.2017.02.010
- 30Stewart, I., & Oke, T. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93, 1879–1900. DOI: 10.1175/BAMS-D-11-00019.1
- 31Taleghani, M., Swan, W., Johansson, E., & Ji, Y. (2021). Urban cooling: Which façade orientation has the most impact on a microclimate? Sustainable Cities and Society, 64, 102547. DOI: 10.1016/j.scs.2020.102547
- 32Vanderhaegen, S., & Canters, F. (2017). Mapping urban form and function at city block level using spatial metrics. Landscape and Urban Planning, 167, 399–409. DOI: 10.1016/j.landurbplan.2017.05.023
- 33VDI. (1997). VDI-Guideline 3787, Part 1: Environmental meteorology–climate and air pollution maps for cities and regions. VDI/Beuth.
- 34Wilhelmi, O. V., & Hayden, M. H. (2010). Connecting people and place: A new framework for reducing urban vulnerability to extreme heat. Environmental Research Letters, 5(1), 014021. DOI: 10.1088/1748-9326/5/1/014021
- 35Yuan, J., Emura, K., & Farnham, C. (2017). Is urban albedo or urban green covering more effective for urban microclimate improvement? A simulation for Osaka. Sustainable Cities and Society, 32, 78–86. DOI: 10.1016/j.scs.2017.03.021
