Have a personal or library account? Click to login
Importance of environmental factors and crop type on weed diversity associated with cereals in Egypt Cover

Importance of environmental factors and crop type on weed diversity associated with cereals in Egypt

Open Access
|Feb 2025

References

  1. Abbate, G., Cicinelli, E., Iamonico, D., & Iberite, M. (2013). Floristic analysis of the weed communities in wheat and corn crops: A case study in western-central Italy. Annali di Botanica, 3, 97–105. https://doi.org/10.4462/annbotrm-10246
  2. Abd Al-Azeem, D. (2003). Currrent situation of the flora and vegetation of Nile Delta region Faculty of Science, Tanta University, Egypt.
  3. Abd Alla, R. (2007). Ecological and Floristic Studies of Sharkiya Governorate Faculty of Science, Benha University, Egypt.
  4. Abd El-Ghani, M. M., & Amer, A. M. (1990). Studies on weed assemblages in croplands, Egypt. I. Broad bean fields. Egyptian Journal of Botany, 33(1), 15–30.
  5. Abd El-Ghani, M. M., Hamdy, R. S., & Hamed, A. B. (2015). Habitat Diversity and Floristic Analysis of Wadi El-Natrun Depression, Western Desert, Egypt. Phytologia Balcanica, 21, 351–366.
  6. Abd El-Ghani, M. M., Huerta-Martínez, F. M., Hongyan, L., & Qureshi, R. (2017). Plant Responses to Hyperarid Desert Environments. Springer.
  7. Al-Sherif, E., Ismael, M., Karam, M., & El Fayoumi, H. (2018). Weed Flora of Fayoum (Egypt), One of the Oldest Agricultural Regions in the World. Planta Daninha, 36. https://doi.org/10.1590/S0100-83582018360100034
  8. Allen, S. E., Grimshaw, H. M., Parkinson, J. A., & Quarmby, C. (1974). Chemical Analysis of Ecological Materials. Blackwell Scientific Publication.
  9. Alsherif, E. A. (2020). Cereal weeds variation in middle Egypt: Role of crop family in weed composition. Saudi Journal of Biological Sciences, 27(9), 2245–2250. https://doi.org/10.1016/j.sjbs.2020.07.001
  10. Andreasen, C., & Skovgaard, I. M. (2009). Crop and soil factors of importance for the distribution of plant species on arable fields in Denmark. Agriculture, Ecosystems & Environment, 133(1), 61–67. https://doi.org/10.1016/j.agee.2009.05.003
  11. Arslan, Z. F. (2018). Decrease in biodiversity in wheat fields due to changing agricultural practices in five decades. Biodiversity and Conservation, 27(12), 3267–3286. https://doi.org/10.1007/s10531-018-1608-9
  12. Ayyad, M. A., & Ghabbour, S. I. (1986). Hot deserts of Egypt and the Sudan. In M. N.-M. Evenari, I., & Goodall, D.W. (Ed.), Ecosyst World 12B, Hot Deserts and Arid Shrublands (pp. 149–202). Elsevier.
  13. Bailey, R. G. (2009). Applications of ecosystem geography. In Ecosystem geography (pp. 169–193). Springer.
  14. Baker, H. G. (1974). The evolution of weeds. Annual Review of Ecology and Systematics, 5, 1–24.
  15. Bardsley, C. E., & Lancaster, J. D. (1965). Sulfur. In C. A. Black, D. D. Evans, J. L. White, L. E. Ensminger, & F. E. Clark (Eds.), Methods of soil analysis. (Part 2. Agronomy. Series No. 9., pp. 1102–1116). American Society of Agronomy.
  16. Barralis, G. (1976). Méthode d’ètude de groupements adventices des cultures annuelles: application á la Côte d’Or. Vème Colloque International sur l’Ecologie et la Biologie des Mauvalses Herbes, 1, 59–68.
  17. Belda, M., Holtanová, E., Halenka, T., & Kalvová, J. (2014). Climate classification revisited: from Köppen to Trewartha. Climate Research, 59(1), 1–13. https://doi.org/10.3354/cr01204
  18. Boulos, L. (1995–2009). Flora of Egypt. Al Hadara Publishing.
  19. Boulos, L., & Fahmy, A. G.-E.-D. (2007). Grasses in ancient Egypt. Kew Bulletin, 507–511.
  20. Cardina, J., Herms, C. P., & Doohan, D. J. (2017). Crop rotation and tillage system effects on weed seedbanks. Weed Science, 50(4), 448–460. https://doi.org/10.1614/0043-1745(2002)050[0448:CRATSE]2.0.CO;2
  21. Chakkour, S., Bergmeier, E., Meyer, S., Kassout, J., Kadiri, M., & Ater, M. (2023). Plant diversity in traditional agroecosystems of North Morocco. Vegetation Classification and Survey, 4, 31–45. https://doi.org/10.3897/VCS.86024
  22. Chytrý, M., Tichý, L., Holt, J., & Botta-Dukát, Z. (2002). Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science, 13, 79–90. https://doi.org/10.1111/j.1654-1103.2002.tb02025.x
  23. Cimalová, Š., & Lososová, Z. (2009). Arable weed vegetation of the northeastern part of the Czech Republic: effects of environmental factors on species composition. Plant Ecology, 203, 45–57. https://doi.org/10.1007/s11258-008-9503-1
  24. Cirujeda, A., Aibar, J., & Zaragoza, C. (2011). Remarkable changes of weed species in Spanish cereal fields from 1976 to 2007. Agronomy for Sustainable Development, 31, 675–688. https://doi.org/10.1007/s13593-011-0030-4
  25. Da Costa, R. C., de Araújo, F. S., & Lima-Verde, L. W. (2007). Flora and life-form spectrum in an area of deciduous thorn woodland (caatinga) in northeastern, Brazil. Journal of Arid Environments, 68(2), 237–247. https://doi.org/10.1016/j.jaridenv.2006.06.003
  26. Dale, M. R. T., Thomas, A. G., & John, E. A. (1992). Environmental factors including management practices as correlates of weed community composition in spring seeded crops. Canadian Journal of Botany, 70, 1931–1939. https://doi.org/10.1139/b92-240
  27. Davey, B., & Bembrick, M. J. (1969). The potentiometric estimation of chloride in water extracts of soils. Soil Science Society of America Journal, 33(3), 385–387. https://doi.org/10.2136/sssaj1969.03615995003300030016x
  28. De Mol, F., Von Redwitz, C., & Gerowitt, B. (2015). Weed species composition of maize fields in Germany is influenced by site and crop sequence. Weed Research, 55(6), 574–585. https://doi.org/10.1111/wre.12169
  29. Deil, U. (1997). Zur geobotanischen Kennzeichnung von Kulturlandschaften. Vergleichende Untersuchungen in Südspanien und Nordmarokko. Franz Steiner.
  30. Eddoud, A., Buisson, E., Achour, L., Guediri, K., Bissati, S., & Abdelkrim, H. (2018). Changes in weed species composition in irrigated agriculture in Saharan Algeria. Weed Research, 58(6), 424–436. https://doi.org/10.1111/wre.12328
  31. El-Ghani, M. A., Soliman, A., Hamdy, R., & Bennoba, E. (2013). Weed flora in the reclaimed lands along the northern sector of the Nile Valley in Egypt. Turkish Journal of Botany, 37(3), 464–488. https://doi.org/10.3906/bot-1205-11
  32. El-Hadidi, M., & Kosinová, J. (1971). Studies on the weed flora of cultivated land in Egypt: preliminary survey. Mitteilungen der Botanischen Staatssammlung München, 10, 354–367.
  33. El-Kassaby, A., Badawi, M., El-Hendi, M., & Mousa, R. (2011). Common Weeds in Rice Fields at Manzalla Area and Their Control Methods. Journal of Plant Production, 2(10), 1379–1391. https://doi.org/10.21608/jpp.2011.85664
  34. El-Khshin, A. A., Habib, M. M., & Shallan, M. A. (1980). Crop Production. I. Principles. Dar El-Maaref Publishers.
  35. El-Ramady, H., Alshaal, T., Bakr, N., Elbana, T., Mohamed, E., & Belal, A.-A. (2018). The soils of Egypt. Springer.
  36. El-Sheikh, M. A. (2013). Weed vegetation ecology of arable land in Salalah, Southern Oman. Saudi Journal of Biological Sciences, 20(3), 291–304. https://doi.org/10.1016/j.sjbs.2013.03.001
  37. El-Demerdash, M., Hosni, H., & Al-Ashri, N. (1997). Distribution of the weed communities in the North East Nile Delta, Egypt. Feddes Repertorium, 108(3-4), 219–232. https://doi.org/10.1002/fedr.19971080311
  38. El Hadidi, M. N. (1993). Natural vegetation. In G. M. Graig (Ed.), The Agriculture of Egypt (pp. 39–62).
  39. El Saied, A., & Bedair, R. (2018). Evaluation of changes in weed flora in response to agricultural practices in the arable lands of El-Menoufia governorate, Nile Delta, Egypt. Taeckholmia, 38, 152–167. https://doi.org/10.21608/taec.2018.5916.1002
  40. Fahmy, A. G. (1997). Evaluation of the weed flora of Egypt from Predynastic to Graeco-Roman times. Vegetation History and Archaeobotany, 6(4), 241–247. https://doi.org/10.1007/BF01370445
  41. Fanfarillo, E., Kasperski, A., Giuliani, A., & Abbate, G. (2019). Shifts of arable plant communities after agricultural intensification: A floristic and ecological diachronic analysis in maize fields of Latium (central Italy). Botany Letters, 166(3), 356–365. https://doi.org/10.1080/23818107.2019.1638829
  42. Fanfarillo, E., Maccherini, S., Angiolini, C., de Simone, L., Fiaschi, T., Tassinari, A., Rosati, L., & Bacaro, G. (2023). Drivers of diversity of arable plant communities in one of their european conservation hotspots. Biodiversity and Conservation, 32(6), 2055–2075. https://doi.org/10.1007/s10531-023-02592-0
  43. Fanfarillo, E., Petit, S., Dessaint, F., Rosati, L., & Abbate, G. (2020). Species composition, richness, and diversity of weed communities of winter arable land in relation to geo-environmental factors: a gradient analysis in mainland Italy. Botany, 98(7), 381–392. https://doi.org/10.1139/cjb-2019-0178
  44. FAO. (2017). The future of food and agriculture – Trends and challenges. Food and Agriculture Organization of the United Nations.
  45. FAOSTAT. (2019). Statistical Yearbook 2019. Food and Agriculture Organization of the United Nations.
  46. Feddema, J. J. (2005). A revised Thornthwaite-type global climate classification. Physical Geography, 26(6), 442–466. https://doi.org/10.2747/0272-3646.26.6.442
  47. Firehun, Y., & Tamado, T. (2006). Weed flora in the Rift Valley sugarcane plantations of Ethiopia as influenced by soil types and agronomic practises. Weed Biology and Management, 6(3), 139–150. https://doi.org/10.1111/j.1445-6664.2006.00207.x
  48. Gaba, S., Chauvel, B., Dessaint, F., Bretagnolle, V., & Petit, S. (2010). Weed species richness in winter wheat increases with landscape heterogeneity. Agriculture, Ecosystems & Environment, 138(3–4), 318–323. https://doi.org/10.1016/j.agee.2010.06.005
  49. Gomaa, N. H. (2012). Composition and diversity of weed communities in Al-Jouf province, northern Saudi Arabia. Saudi Journal of Biological Sciences, 19(3), 369–376. https://doi.org/10.1016/j.sjbs.2012.05.002
  50. Grime, J. P. (2002). Plant strategies, vegetation processes and ecosystem properties. J. Wiley & Sons.
  51. Håkansson, S. (1982). Multiplication, growth and persistence of perennial weeds. In W. Holzner & Numata, N. (Ed.), Biology and Ecology of Weeds (pp. 123–135). Dr. W. Junk Publishers.
  52. Hassannejad, S., & Ghafarbi, S. (2013). Weed flora survey of Tabriz wheat (Triticum aestivum L.) fields. Journal of Biodiversity and Environmental Sciences, 3(6), 118–132.
  53. Holzner, W., & Immonen, R. (1982). The agrestal weed flora and vegetation of the world. In W. Holzner & Numata, N. (Ed.), Biology and ecology of weeds (pp. 203–226). Dr. W. Junk Publisher.
  54. Imam, M., & Kosinová, J. (1972). Studies on the weed flora of cultivated land in Egypt 2. Weeds of rice fields. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 92, 90–107.
  55. Jackson, M. L. (1967). Soil chemical analysis-advanced course. Washington Department of Soil Sciences.
  56. Kazi Tani, C., Le Bourgeois, T., & Munoz, F. (2010). Aspects floristiques des adventices du domaine phytogéographique oranais (Nord-Ouest Algérien) et persistance d’espèces rares et endémiques. Flora Mediterranea, 20, 29–46.
  57. Koleff, P., Gaston, K. J., & Lennon, J. J. (2003). Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72, 367–382. https://doi.org/10.1046/j.1365-2656.2003.00710.x
  58. Landi, S., Hausman, J.-F., Guerriero, G., & Esposito, S. (2017). Poaceae vs. abiotic stress: focus on drought and salt stress, recent insights and perspectives. Frontiers in plant science, 8, 1214. https://doi.org/10.3389/fpls.2017.01214
  59. Lepš, J., & Šmilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. Cambridge University Press.
  60. Lososová, Z., Chytrý, M., Cimalová, Š., Kropáč, Z., Otýpková, Z., Pyšek, P., & Tichý, L. (2004). Weed vegetation of arable land in Central Europe: Gradients of diversity and species composition. Journal of Vegetation Science, 15, 415–422. https://doi.org/10.1111/j.1654-1103.2004.tb02279.x
  61. Mahgoub, A. M. M. A. (2019a). Comparative view for the impact of five eco factors on species distribution and weed community structure in Isthmus of Suez and adjoining farmland east Nile delta, Egypt. Heliyon, 5(8), e02161. https://doi.org/10.1016/j.heliyon.2019.e02161
  62. Mahgoub, A. M. M. A. (2019b). The impact of five environmental factors on species distribution and weed community structure in the coastal farmland and adjacent territories in the northwest delta region, Egypt. Heliyon, 5(4), e01441. https://doi.org/10.1016/j.heliyon.2019.e01441
  63. Mahgoub, A. M. M. A. (2021). Measuring the ecological preference for growth of 150 of the most influential weeds in weed community structure associated with agronomic and horticultural crops. Saudi Journal of Biological Sciences, 28(10), 5593–5608. https://doi.org/10.1016/j.sjbs.2021.05.070
  64. Marshall, E., & Arnold, G. (1995). Factors affecting field weed and field margin flora on a farm in Essex, UK. Landscape and Urban Planning, 31(1–3), 205–216. https://doi.org/10.1016/0169-2046(94)01047-C
  65. Marshall, E. J. P., Brown, V. K., Boatman, N. D., Lutman, P. J. W., Squire, G. R., & Ward, L. K. (2003). The role of weeds in supporting biological diversity within crop fields. Weed Research, 43(2), 77–89. https://doi.org/10.1046/j.1365-3180.2003.00326.x
  66. Mashaly, I. A. (2003). Phytosociological Study on the Weed Flora of Cropland in Kafr El-Sheikh Governorate, Egypt. El-Minia Science Bulletin, 14(2), 127–153.
  67. Mashaly, I. A., El-Halawany, E. F., Abu-Ziada, M. E., & Abd-El Aal, M. (2013). Vegetation-soil relationship in the cultivated land habitat in El-Behira governorate, Egypt. Journal of Environmental Sciences, 42(4), 607–623.
  68. Médiène, S., Valantin-Morison, M., Sarthou, J.-P., de Tourdonnet, S., Gosme, M., Bertrand, M., Estrade, J. R., Aubertot, J.-N., Rusch, A., Motisi, N., Pelosi, C., & Doré, T. (2011). Agroecosystem management and biotic interactions: a review. Agronomy for Sustainable Development, 31(3), 491–514. https://doi.org/10.1007/s13593-011-0009-1
  69. Mustafa, G. (2002). Some aspects of the biodiversity of the weed flora of the farmlands in Upper Egypt. Cairo University. Cairo, Egypt.
  70. Nagy, K., Lengyel, A., Kovács, A., Türei, D., Csergő, A. M., & Pinke, G. (2018). Weed species composition of small-scale farmlands bears a strong crop-related and environmental signature. Weed Research, 58(1), 46–56. https://doi.org/10.1111/wre.12281
  71. Nowak, A., Nowak, S., & Nobis, M. (2016). Spring weed communities of rice agrocoenoses in central Nepal. Acta Botanica Croatica, 75(1), 99–108. https://doi.org/doi.org/10.1515/botcro-2016-0004
  72. Nowak, A., Nowak, S., Nobis, M., & Nobis, A. (2015). Crop type and altitude are the main drivers of species composition of arable weed vegetation in Tajikistan. Weed Research, 55(5), 525–536. https://doi.org/10.1111/wre.12165
  73. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019). Vegan: Community ecology package. In (Version 2.5-6) https://cran.r-project.org/web/packages/vegan/vegan.pdf
  74. Pansu, M., & Gautheyrou, J. (2007). Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer.
  75. Peerzada, A. M., O’Donnell, C., & Adkins, S. (2019). Biology, impact, and management of common sowthistle (Sonchus oleraceus L.). Acta Physiologiae Plantarum, 41, 136. https://doi.org/10.1007/s11738-019-2920-z
  76. Pinke, G., Csiky, J., Mesterházy, A., Tari, L., Pál, R., Botta-Dukát, Z., & Czúcz, B. (2014). The impact of management on weeds and aquatic plant communities in Hungarian rice crops. Weed Research, 54(4), 388–397. https://doi.org/10.1111/wre.12084
  77. Pinke, G., Karácsony, P., Czúcz, B., Botta-Dukát, Z., & Lengyel, A. (2012). The influence of environment, management and site context on species composition of summer arable weed vegetation in Hungary. Applied Vegetation Science, 15(1), 136–144. https://doi.org/10.1111/j.1654-109X.2011.01158.x
  78. Pinke, G., Pál, R., & Botta-Dukát, Z. (2010). Effects of environmental factors on weed species composition of cereal and stubble fields in western Hungary. Central European Journal of Biology, 5(2), 283–292. https://doi.org/10.2478/s11535-009-0079-0
  79. Poggio, S. L., Satorre, E. H., & de la Fuente, E. B. (2004). Structure of weed communities occurring in pea and wheat crops in the Rolling Pampa (Argentina). Agriculture, Ecosystems & Environment, 103(1), 225–235. https://doi.org/10.1016/j.agee.2003.09.015
  80. Qasem, J. (1997). Competitive ability of Amaranthus retroflexus, and Chenopodium murale and its effect on tomato growth. Dirasat. Agricultural Sciences, 24(1), 96–112.
  81. Quézel, P. (1978). Analysis of the flora of Mediterranean and Saharan Africa. Annals of the Missouri Botanical Garden, 65(2), 479–534. https://doi.org/10.2307/2398860
  82. R Development Core Team. (2012). R: A language and environment for statistical computing. In R Foundation for Statistical Computing. http://www.R-project.org
  83. Rahman, A., James, T. K., & Grbavac, N. (2006). Correlation between the soil seed bank and weed populations in maize fields. Weed Biology and Management, 6(4), 228–234. https://doi.org/10.1111/j.1445-6664.2006.00223.x
  84. Raunkiær, C. (1934). The life forms of plants and statistical plant geography. Clarendon Press.
  85. Salama, F., Abd El-Ghani, M., El-Tayeh, N., Amro, A., & Abdrabbu, H. (2016). Weed flora of common crops in desert reclaimed arable lands of southern Egypt. Taeckholmia, 36(1), 58–76. https://doi.org/10.21608/taec.2016.11940
  86. Salama, F. M., Abd El-Ghani, M. M., El-Tayeh, N. A., Amro, A., & Abdrabbu, H. S. (2017). Correlations between soil variables and weed communities in major crops of the desert reclaimed lands in southern Egypt. Rendiconti Lincei, 28(2), 363–378. https://doi.org/doi.org/10.1007/s12210-017-0604-4
  87. Salonen, J., Hyvönen, T., & Jalli, H. (2011). Composition of weed flora in spring cereals in Finland- a fourth survey. Agricultural and Food Science, 20, 245–261. https://doi.org/10.2137/145960611797471534
  88. Shaheen, A. M. (2002). Weed diversity of newly farmed land on the southern border of Egypt (Eastern and Eastern shores of Lake Nasser). Pakistan Journal of Biological Sciences, 5, 602–608. https://doi.org/10.3923/pjbs.2002.802.806
  89. Shaltout, K., & El Fahar, R. (1991). Diversity and phenology of weed communities in the Nile Delta region. Journal of Vegetation Science, 2(3), 385–390. https://doi.org/10.2307/3235931
  90. Shehata, M. N., & El-Fahar, R. A. (2000). The vegetation of reclaimed areas in Salhiya region. Proc. of the 1st Intern. Conf. Biol. Sci. (ICBS), Faculty of Science, Tanta University, 1, 315–332.
  91. Sher, H., & Al-Yemeny, M. N. (2011). Ecological investigation of the weed flora in arable and non arable lands of Al-Kharj area, Saudi Arabia. African Journal of Agricultural Research, 6(4), 901–906.
  92. Skinner, K., Smith, L., & Rice, P. (2000). Using noxious weed lists to prioritize targets for developing weed management strategies. Weed Science, 48(5), 640–644. https://doi.org/10.1614/0043-1745(2000)048[0640:UNWLTP]2.0.CO;2
  93. Soliman, A. T. (1996). Studies on plant life in newly reclaimed areas west of the Delta Cairo University, Egypt. Cairo.
  94. Stevenson, F. C., Légère, A., Simard, R. R., Angers, D. A., Pageau, D., & Lafond, J. (2017). Weed species diversity in spring barley varies with crop rotation and tillage, but not with nutrient source. Weed Science, 45(6), 798–806. https://doi.org/10.1017/S0043174500088998
  95. Storkey, J., Moss, S. R., & Cussans, J. W. (2010). Using Assembly Theory to Explain Changes in a Weed Flora in Response to Agricultural Intensification. Weed Science, 58(1), 39–46. https://doi.org/10.1614/WS-09-096.1
  96. Šilc, U., Vrbničanin, S., Božić, D., Čarni, A., & Dajić Stevanović, Z. (2009). Weed vegetation in the north-western Balkans: diversity and species composition. Weed Research, 49(6), 602–612. https://doi.org/10.1111/j.1365-3180.2009.00726.x
  97. Tichý, L. (2002). JUICE, software for vegetation classification. Journal of Vegetation Science, 13, 451–453. https://doi.org/10.1111/j.1654-1103.2002.tb02069.x
  98. Tichý, L., & Chytrý, M. (2006). Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science, 17, 809–818. https://doi.org/10.1111/j.1654-1103.2006.tb02504.x
  99. Trewartha, G. T., & Horn, L. H. (1980). An introduction to climate. GMC Raw Hiss International Book company.
  100. Turki, Z., & Sheded, M. (2002). Some observations on the weed flora of rice fields in the Nile Delta, Egypt. Feddes Repertorium: Zeitschrift für botanische Taxonomie und Geobotanik, 113(5-6), 394–403. http://dx.doi.org/10.1002/1522-239X(200210)113:5/6%3C394::AID-FEDR394%3E3.0.CO;2-0
  101. Vencill, W. (2002). Herbicide handbook. Weed Science Society of America.
  102. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. http://dx.doi.org/10.1097/00010694-193401000-00003
  103. Willcox, G. (2012). Searching for the origins of arable weeds in the Near East. Vegetation History and Archaeobotany, 21(2), 163–167. https://doi.org/10.1007/s00334-011-0307-1
  104. Zimdahl, R. L. (2007). Weed-crop competition: a review. Wiley.
DOI: https://doi.org/10.3986/hacq-2025-0008 | Journal eISSN: 1854-9829 | Journal ISSN: 1581-4661
Language: English
Page range: 41 - 55
Submitted on: Aug 11, 2024
Accepted on: Nov 30, 2024
Published on: Feb 21, 2025
Published by: Slovenian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Ethar A. Hussein, Monier M. Abd El-Ghani, Urban Šilc, Lamiaa F. Shalabi, published by Slovenian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.