Have a personal or library account? Click to login
Eco-coenotic analysis of pasture areas from the Danube Delta, Romania Cover

Eco-coenotic analysis of pasture areas from the Danube Delta, Romania

Open Access
|Feb 2025

References

  1. Adar, S., Sternberg, M., Argaman, E., Henkin, Z., Dovrat, G., Zaady, E., & Paz-Kagan, T. (2023). Testing a novel pasture quality index using remote sensing tools in semiarid and Mediterranean grasslands. Agriculture, Ecosystems & Environment, 357, 108674. https://doi.org/10.1016/j.agee.2023.108674.
  2. Al-Mufti, M.M., Sydes, C.L., Furness, S.B., Grime, J.P., & Band, S.R. (1977). A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology, 65, 759–791.
  3. Anamo, A., Mammo, S., & Temesgen, M. (2023). Floristic composition and community analysis of woody species in Hereje Natural Forest, southwest Ethiopia. SN Applied Sciences, 5(1), 48. https://doi.org/10.1007/s42452-022-05265-9.
  4. Ashton, D., Porter, S., Downie, N., Linsley, T., & Entriken, W. (2016). Radarchart: Radar chart from ‘Chart.js’. https://CRAN.R-project.org/package=radarchart.
  5. Balyan, R.S., Malik, R.K., Panwar, R.S., & Singh, S. (1991). Competitive ability of winter wheat cultivars with wild oat (Avena ludoviciana). Weed Science, 39(2), 154–158.
  6. Begon, M., Townsend, C.R., & Harper, J. L. (2006). Ecology: From individuals to ecosystems. Blackwell Publishing.
  7. Birhanu, L., Bekele, T., Tesfaw, B., & Demissew, S. (2021). Relationships between topographic factors, soil and plant communities in a dry Afromontane forest patches of Northwestern Ethiopia. PloS one, 16(3), e0247966. https://doi.org/10.1371/journal.pone.0247966.
  8. Borza, A., & Boşcaiu, N. (1965). Introducere în studiul covorului vegetal (Introduction to the study of the plant carpet) [in Romanian]. Academia Republicii Populare Române.
  9. Bouxin, G. (2005). Ginkgo, a multivariate analysis package. Journal of Vegetation Science, 16, 355–359. https://doi.org/10.1111/j.1654-1103.2005.tb02374.x
  10. Braun-Blanquet, J. (1964). Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer.
  11. Briemle, G., & Ellenberg, H. (1994). Zur Mahdverträglichkeit von Grünlandpflanzen – Möglichkeiten der praktischen Anwendung von Zeigerwerten. Natur und Landschaft, 69, 139–147.
  12. Briemle, G. (1996). Farbatlas Kräuter und Gräser in Feld und Wald, Stuttgart (Hohenheim): Ulmer, ISBN 3-8001-4125-6.
  13. Briemle, G., Nitsche, S., & Nitsche, L. (2002). Nutzungswertzahlen für Gefäßpflanzen des Grünlandes. Schriftenreihe für Vegetationskunde, 38, 203–225.
  14. Calota, A.M., & Patru-Stupariu, I. (2019). Pasture resilience towards landscape changes: Assessing pastures quality in the context of land-use and land-cover changes in Romania. European Journal of Geography, 10(2), 12–26.
  15. Carreira, E., Serrano, J., Lopes de Castro, J., Shahidian, S., & Pereira, A.F. (2023). Montado mediterranean ecosystem (Soil–Pasture–Tree and animals): a review of monitoring technologies and grazing systems. Applied Sciences, 13(10), 6242. https://doi.org/10.3390/app13106242.
  16. Chifu, T., Irimia, I., & Zamfirescu, O. (2014). Diversitatea fitosociologică a vegetaţiei României. II. Vegetația erbacee antropizată. A. Vegetația pajiștilor (The phytosociological diversity of Romania's vegetation. II. Anthropogenic herbaceous vegetation. A. Grassland vegetation) [in Romanian]. Institutul European 659 pp.
  17. Chirilă, S.D., Răileanu, Ș., David, L.O., Covaliov, S., & Doroftei, M. (2024). An analysis of plant palatability on pastures of the delta: Case study, Danube Delta area, Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), 13568–13568. https://doi.org/10.15835/nbha52113568.
  18. Chytrý, M., Tichý, L., Hennekens, S.M., …, & Schaminée, J.H.J. (2020). EUNIS Habitat Classification: expert system, characteristic species combinations, and distribution maps of European habitats. Applied Vegetation Science, 23, 648–675. https://doi.org/10.1111/avsc.12519
  19. Covaliov, S. (2023). Resurse vegetale. In: Lupu, G. (2023). Cercetări privind conservarea biodiversității, habitatelor, speciile invazive (non-native), exploatarea sustenabilă a resurselor naturale și implicațiile socio-economice din Rezervația Biosferei Delta Dunării, în contextul schimbărilor climatice, 230 pagini. Raport Faza 4 / decembrie / 2023, al proiectului nr. PN 23 13 01 03 al contractului nr. 35N/2023/MCI, executant: INCDDD - Tulcea. Tulcea, România.
  20. Cristea, V., Gafta, D., & Pedrotti, F. (2004). Fitosociologie (Phytosociology) [in Romanian]. Editura Presa Universitară Clujeană.
  21. Cui, S., Xiao, Y., Zhou, Y., Wu, P., Cui, L., & Zheng, G. (2023). Variations in diversity, composition, and species interactions of soil microbial community in response to increased N deposition and precipitation intensity in a temperate grassland. Ecological Processes, 12(1), 35. https://doi.org/10.1186/s13717-023-00445-w
  22. de Bello, F., Lepš, J., & Sebastià, M.T. (2007). Grazing effects on the species-area relationship: Variation along a climatic gradient in NE Spain. Journal of Vegetation Science, 18(1), 25–34. https://doi.org/10.1111/j.1654-1103.2007.tb02512.x
  23. de Cáceres, M., & Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. Ecology, 90, 3566–3574. https://doi.org/10.1890/08-1823.1
  24. Decision no. 78/2015. Decision no. 78/2015 regarding the modification and completion of the Methodological Norms for the application of the provisions of the Government Emergency Ordinance no. 34/2013 regarding the organization, administration and exploitation of permanent meadows and for the amendment and completion of the Land Fund Law no. 18/1991, approved by Government Decision no. 1.064/2013. Data from: https://lege5.ro/Gratuit/gu3dinrwgm/hotararea-nr-78-2015-privind-modificarea-si-completarea-normelor-metodologice-pentru-aplicarea-prevederilor-ordonantei-de-urgenta-a-guvernului-nr-34-2013-privind-organizarea-administrarea-si-exploatar?pid=74842424#google_vignette. [accessed 2024 July 25].
  25. Dregne, H.E. (2002). Land degradation in the drylands. Arid land research and management, 16(2), 99–132. https://doi.org/10.1080/153249802317304422
  26. Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible assymmetrical approach. Ecological Monographs 67, 345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
    DufrêneM. LegendreP. 1997 Species assemblages and indicator species: the need for a flexible assymmetrical approach Ecological Monographs 67 345 366 https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
  27. Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., & Paulissen, D. (1992). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–258.
  28. EURO+MED (2024). Euro+Med PlantBase is the information resource for Euro-Mediterranean plant diversity. Data from: http://ww2.bgbm.org/EuroPlusMed [accessed 2023 December 8].
  29. Fick, S.E., & Hijmans, R.J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 14. https://doi.org/10.1002/joc.5086
  30. Florea, N., & Munteanu, I. (2003). Romanian Soil Taxonomy System (SRTS), ICPA, Est-falia Publishing House, Bucharest, 182 p.
  31. Fox, J.F. (1979). Intermediate-disturbance hypothesis. Science, 204, 1344–1345. https://doi.org/10.1126/science.204.4399.1344
  32. Frank, A.B., & Ries, R.E. (1990). Effect of soil water, nitrogen, and growing degree-days on morphological development of crested and western wheatgrass. Rangeland Ecology & Management/Journal of Range Management Archives, 43(3), 257–260.
  33. García, S., Guido, A., Pezzani, F., & Lattanzi, F.A. (2023). Invasion strategies of Cynodon dactylon: Competitive ability under low-nutrient conditions. Austral Ecology, 48(6), 1107–1120. https://doi.org/10.1111/aec.13341
  34. Grime, J. (1973). Competitive Exclusion in Herbaceous Vegetation. Nature, 242, 344–347. https://doi.org/10.1038/242344a0
  35. Guo, Q. (2004). Slow recovery in desert perennial vegetation following prolonged human disturbance. Journal of Vegetation Science, 15(6), 757–762. https://doi.org/10.1111/j.1654-1103.2004.tb02318.x
  36. Guretzky, J.A., Moore, K.J., Brummer, E. C., & Burras, C.L. (2005). Species diversity and functional composition of pastures that vary in landscape position and grazing management. Crop Science, 45(1), 282–289. https://doi.org/10.2135/cropsci2005.0282a
  37. Herrero-Jáuregui, C., & Oesterheld, M. (2018). Effects of grazing intensity on plant richness and diversity: A meta-analysis. Oikos, 127(6), 757–766. https://doi.org/10.1111/oik.04893
  38. Hussein, E.A., Abd El-Ghani, M.M., Hamdy, R.S., & Shalabi, L.F. (2021). Do anthropogenic activities affect floristic diversity and vegetation structure more than natural soil properties in hyper-arid desert environments? Diversity, 13(4), 157. https://doi.org/10.3390/d13040157
  39. Inkscape 1.2.2 (732a01da63, 2022-12-09). Data from: https://inkscape.org/. Accessed on 20 June 2023.
  40. ISO 11263 (1994). Determination of phosphorus - Spectrometric determination of phosphorus soluble in sodium hydrogen carbonate solution. Data from: https://www.iso.org/standard/19241.html. [accessed 2023 October 11].
  41. Klapp, E., Boeker, P., König, F., & Stählin, A. (1953). Wartzahlen der Grünlandpflanzen. Das Gründland, 2, 38–42.
  42. Klimek, S., Hofmann, M., & Isselstein, J. (2007). Plant species richness and composition in managed grasslands: the relative importance of field management and environmental factors. Biological conservation, 134(4), 559–570. https://doi.org/10.1016/j.biocon.2006.09.007
  43. Klotz, S., & Kühn, I. (2002). Indikatoren des anthropogenen Einflusses auf die Vegetation. Schriftenreihe für Vegetationskunde, 38, 241–246.
  44. Kochánková, J., & Mandák, B. (2008). Biological flora of Central Europe: Atriplex tatarica L. Perspectives in Plant Ecology, Evolution and Systematics, 10(4), 217–229. https://doi.org/10.1016/j.ppees.2008.08.001
  45. Körner, C. (2007). The use of‚ altitude' in ecological research. Trends in Ecology & Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006
  46. Lambers, H., Chapin III, F. S., & Pons, T. L. (2008). Plant Physiological Ecology. Springer New York.
  47. Lazarina, M., Charalampopoulos, A., Psaralexi, M., Krigas, N., Michailidou, D. E., Kallimanis, A. S., & Sgardelis, S. P. (2019). Diversity patterns of different life forms of plants along an elevational gradient in Crete, Greece. Diversity, 11(10), 200. https://doi.org/10.3390/d11100200
  48. Legendre, P., & Legendre, L (1998). Numerical ecology. Second English edition. Elsevier, Amsterdam, The Netherlands.
  49. Mucina, L., Bültmann, H., Dierßen, K. …, & Tichý, L. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen and algal communities. Applied Vegetation Science, 19, 3–264. https://doi.org/10.1111/avsc.12257
  50. Nakahama, N., Hirasawa, Y., Minato, T., Hasegawa, M., Isagi, Y., & Shiga, T. (2015). Recovery of genetic diversity in threatened plants through use of germinated seeds from herbarium specimens. Plant Ecology, 216, 1635–1647. https://doi.org/10.1007/s11258-015-0547-8
  51. Olff, H., & Ritchie, M.E. (1998). Effects of herbivores on grassland plant diversity. Trends in ecology & evolution, 13(7), 261–265. https://doi.org/10.1016/S0169-5347(98)01364-0
  52. Wang, L., Gan, Y., Wiesmeier, M., Zhao, G., Zhang, R., Han, G., Siddique, K.H.M., & Hou, F. (2018). Grazing exclusion-An effective approach for naturally restoring degraded grasslands in Northern China. Land Degradation & Development, 29, 4439–4456. https://doi.org/10.1002/ldr.3191
  53. Păcurar, F., & Rotar, I., (2014). Metode de studiu și interpretare a vegetației pajiștilor, Editura Risoprint, Cluj Napoca.
  54. QGIS Development Team (2022). QGIS version 3.28. Data from: https://qgis.org, [accessed 2024 June 29].
  55. Qin, G.X., Wu, J., Li, C.B., Qin, A.N., & Yao, X.Q. (2019). Grassland vegetation phenology change and its response to climate changes in North China. Chinese Journal of Applied Ecology, 30(12), 4099–4107. https://doi.org/10.13287/j.1001-9332.201912.015.
  56. Rahbek, C. (1995). The elevational gradient of species richness: a uniform pattern? Ecography, 18(2), 200–205.
  57. Rewilding Europe (2021). Rewilding in Action: How Natural Grazing Affects Vegetation in the Danube Delta. URL: https://rewilding-danube-delta.com/news/rewilding-in-action-how-natural-grazing-affects-vegetation-in-the-danube-delta/.
  58. Rousseeuw, P.J. (1987). Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7
  59. RStudio Team (2024). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. Data from: http://www.rstudio.com/. [accessed 2024 June 29].
  60. Sewale, B., & Mammo, S. (2022). Analysis of floristic composition and plant community types in Kenech Natural Forest, Kaffa Zone, Ethiopia. Trees, Forests and People, 7, 100170. https://doi.org/10.1016/j.tfp.2021.100170
  61. Shi, H., Wang, Y., Cheng, Z., Ye, T., & Chan, Z. (2012). Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance. PLoS One, 7(12), e53422. https://doi.org/10.1371/journal.pone.0053422
  62. Sosnowski, J., & Solka, K.M. (2019). Floristic composition of selected lowland meadows in the liw commune. Journal of Ecological Engineering, 20(2), 79–86. https://doi.org/10.12911/22998993/95096
  63. SR ISO 10390 (1998). Soil, treated biowaste and sludge – Determination of pH.
  64. SR ISO 10694 (1998). Soil quality – Determination of organic and total carbon after dry combustion (elementary analysis)
  65. STAS 7184/21-82. Determination of humus content
  66. Strat, D. (2016). Floristic composition and functional zones pattern of the beach-dune system along the Danube Delta coast-Romania. Forum geografic, 15(1), 65–79. https://doi.org/10.5775/fg.2016.093.i
  67. ter Braak, C.J.F., & Šmilauer, P. (2018). Canoco reference manual and user's guide: Software for ordination (version 5.10). Ithaca, USA: Microcomputer Power. Data from: http://www.microcomputerpower.com/. [accessed 2024 June 27].
  68. Tichý, L. (2002). JUICE, software for vegetation classification. Journal of Vegetation Science, 13, 451–453. https://doi.org/10.1111/j.1654-1103.2002.tb02069.x
  69. Tilman, D., Wedin, D., & Knops, J. (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379(6567), 718–720. https://doi.org/10.1038/379718a0
  70. Xu, X., Du, H., Fan, W., Hu, J., Mao, F., & Dong, H. (2019). Long-term trend in vegetation gross primary production, phenology and their relationships inferred from the FLUXNET data. Journal of Environmental Management, 246, 605–616. https://doi.org/10.1016/j.jenvman.2019.06.023.
  71. Xu, Y., Yang, J., & Chen, Y.N. (2016). NDVI-based vegetation responses to climate change in an arid area of China. Theoretical and Applied Climatology, 126, 213–222. https://doi.org/10.1007/s00704-015-1572-1
  72. Zelnik, I., & Čarni, A. (2013). Plant species diversity and composition of wet grasslands in relation to environmental factors. Biodiversity and Conservation, 22, 2179–2192. https://doi.org/10.1007/s10531-013-0448-x
DOI: https://doi.org/10.3986/hacq-2025-0005 | Journal eISSN: 1854-9829 | Journal ISSN: 1581-4661
Language: English
Page range: 25 - 40
Submitted on: Jan 22, 2024
Accepted on: Aug 7, 2024
Published on: Feb 21, 2025
Published by: Slovenian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Simona Dumitrița Chirilă, Silviu Covaliov, Ștefan Răileanu, Livia Oana David, Mihai Doroftei, Adrian Burada, Marius Făgăraș, published by Slovenian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.