Have a personal or library account? Click to login
Automated biopsy path planning and navigation using a novel software-hardware platform Cover

Automated biopsy path planning and navigation using a novel software-hardware platform

Open Access
|Dec 2025

References

  1. Abu-Dakka F.J., Rubio F., Valero F., Mata V., Evolutionary indirect approach to solving trajectory planning problem for industrial robots operating in workspaces with obstacles, Eur. J. Mech. A Solids, 2013, 42, 210–218.
  2. Badawi A.M., El-Mahdy M.A., Path planning simulation for 3D ultrasound guided needle biopsy system, Proc. Midwest Symp. Circuits Syst., 2003, 1, 345–347.
  3. Brunenberg E.J.L., Vilanova A., Visser-Vandewalle V., Temel Y., Ackermans L., Platel B., Ter Haar Romeny B.M., Automatic trajectory planning for deep brain stimulation: A feasibility study, In Med. Image Comput. Comput. Assist. Interv. – MICCAI, 2007, 4791, 584–592.
  4. Christou A.S., Amalou A., Lee H., Rivera J., Li R., Kassin M.T., ..., Wood B.J., Image-guided robotics for standardized and automated biopsy and ablation, Semin. Interv. Radiol., 2021, 38 (5), 565–575.
  5. Ciszkiewicz A., Milewski G., Path planning for minimally-invasive knee surgery using a hybrid optimization procedure, Comput. Methods Biomech. Biomed. Engin., 2018, 21 (1), 47–54.
  6. Ciszkiewicz A., Lorkowski J., Milewski G., Differential evolution and cost-maps for needle path planning in Baker’s cyst aspiration, Acta Bioeng. Biomech., 2022, 24 (4).
  7. De Baere T., Roux C., Noel G., Delpla A., Deschamps F., Varin E., Tselikas L., Robotic assistance for percutaneous needle insertion in the kidney: Preclinical proof on a swine animal model, Eur. Radiol. Exp., 2022, 6 (1), 13.
  8. Drozd D., Ciszkiewicz A., Fast segmentation of convex cyst-like structures in gelatin soft tissue phantoms under ultrasound imaging with artifacts and limited training samples, Adv. Sci. Technol. Res. J., 2024, 18 (4), 89–96.
  9. Fong A.J., Stewart C.L., Lafaro K., LaRocca C.J., Fong Y., Femino J.D., Crawford B., Robotic assistance for quick and accurate image-guided needle placement, Updates Surg., 2021, 73 (3), 1197–1201.
  10. Gao F., Han L., Implementing the Nelder-Mead simplex algorithm with adaptive parameters, Comput. Optim. Appl., 2012, 51 (1), 259–277.
  11. Gromniak M., Neidhardt M., Heinemann A., Püschel K., Schlaefer A., Needle placement accuracy in CT-guided robotic post mortem biopsy, Curr. Dir. Biomed. Eng., 2020, 6, 20200031.
  12. Hall W.A., Liu H., Martin A.J., Maxwell R.E., Truwit C.L., Brain biopsy sampling by using prospective stereotaxis and a trajectory guide, J. Neurosurg., 2001, 94 (1), 67–71.
  13. Leung K.Y.E., Bosch J.G., Localized shape variations for classifying wall motion in echocardiograms, Med. Image Comput. Comput. Assist. Interv. – MICCAI, 2007, 4791, 52–59.
  14. Liang K., Rogers A.J., Light E.D., Von Allmen D., Smith S.W., Simulation of autonomous robotic multiple-core biopsy by 3D ultrasound guidance, Ultrason. Imaging, 2010, 32 (2), 118–127.
  15. Mahmoud M.Z., Aslam M., Alsaadi M., Fagiri M.A., Alonazi B., Evolution of robot-assisted ultrasound-guided breast biopsy systems, J. Radiat. Res. Appl. Sci., 2018, 11 (1), 89–97.
  16. Majak M., Żuk M., Świątek-Najwer E., Popek M., Pietruski P., Augmented reality visualization for aiding biopsy procedure according to computed tomography based virtual plan, Acta Bioeng. Biomech., 2021, 23 (2).
  17. Marcus H.J., Vakharia V.N., Sparks R., Rodionov R., Kitchen N., McEvoy A.W., …, Duncan J.S., Computer-assisted versus manual planning for stereotactic brain biopsy: A retrospective comparative pilot study, Oper. Neurosurg., 2020, 18 (4), 417–422.
  18. Mason D., Scaramallion, Mrbean-Bremen, Rhaxton, Suever J., Orfanos D.P., Sentner T., 2024, Pydicom/pydicom: Pydicom 3.0.1 (version v3.0.1) [Software], Zenodo.
  19. Monfaredi R., Concepcion-Gonzalez A., Acosta Julbe J., Fischer E., Hernandez-Herrera G., Cleary K., Oluigbo C., Automatic path-planning techniques for minimally invasive stereotactic neurosurgical procedures – A systematic review, Sensors, 2024, 24 (16), 5238.
  20. Moustris G.P., Hiridis S.C., Deliparaschos K.M., Konstantinidis K.M., Evolution of autonomous and semi-autonomous robotic surgical systems: A review of the literature, Int. J. Med. Robot., 2011, 7 (4), 375–392.
  21. Napalkova L., Rozenblit J.W., Hwang G., Hamilton A.J., Suantak L., An optimal motion planning method for computer-assisted surgical training, Appl. Soft Comput., 2014, 24, 889–899.
  22. Navkar N.V., Tsekos N.V., Stafford J.R., Weinberg J.S., Deng Z., Visualization and planning of neurosurgical interventions with straight access, Inf. Process. Comput. Assist. Interv., 2010, 6135, 1–11.
  23. Pietruski P., Majak M., Świątek-Najwer E., Żuk M., Popek M., Świecka M., … Mazurek M., Replacing cutting guides with an augmented reality-based navigation system: A feasibility study in the maxillofacial region, Int. J. Med. Robot., 2023, 19 (3), e2499.
  24. Phee L., Yuen J., Xiao D., Chan C.F., Ho H., Thng C.H., Ng W.S., Ultrasound guided robotic biopsy of the prostate, Int. J. Humanoid Robot., 2006, 3 (4), 463–483.
  25. Qureshi A.H., Ayaz Y., Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments, Robot. Auton. Syst., 2015, 68, 1–11.
  26. Scharll Y., Radojicic N., Laimer G., Schullian P., Bale R., Puncture accuracy of robot-assisted CT-based punctures in interventional radiology: An ex vivo study, Diagnostics, 2024, 14 (13), 1371.
  27. Shi M., Liu H., Tao G., Fajardo L.L., Stereofluoroscopic image-guided robotic biopsy system, Proc. SPIE, 1999, 193–200.
  28. Sparks R., Vakharia V., Rodionov R., Vos S.B., Diehl B., Wehner T., … Ourselin S., Anatomy-driven multiple trajectory planning (Admtp) of intracranial electrodes for epilepsy surgery, Int. J. Comput. Assist. Radiol. Surg., 2017, 12 (8), 1245–1255.
  29. Spenkelink I.M., Heidkamp J., Avital Y., Fütterer J.J., Evaluation of the performance of robot assisted CT-guided percutaneous needle insertion: Comparison with freehand insertion in a phantom, Eur. J. Radiol., 2023, 162, 110753.
  30. Starup-Hansen J., Williams S.C., Funnell J.P., Hanrahan J.G., Islam S., Al-Mohammad A., Hill C.S., Optimising trajectory planning for stereotactic brain tumour biopsy using artificial intelligence: A systematic review, Br. J. Neurosurg., 2023, 1–10.
  31. Świątek-Najwer E., Majak M., Popek M., Żuk M., “Image to patient” equal-resolution surface registration supported by a surface scanner: Analysis of algorithm efficiency for computer-aided surgery, Int. J. Comput. Assist. Radiol. Surg., 2022, 18 (2), 319–328.
  32. Tanaiutchawoot N., Treepong B., Wiratkapan C., Suthakorn J., A path generation algorithm for biopsy needle insertion in a robotic breast biopsy navigation system, Proc. IEEE ROBIO, 2014, 398–403.
  33. Treepong B., Tanaiutchawoot N., Wiratkapun C., Suthakorn J., On the design and development of a breast biopsy navigation system, Proc. IEEE BHI, 2014, 273–276.
  34. Trope M., Shamir R.R., Joskowicz L., Medress Z., Rosenthal G., Mayer A., …, Shoshan Y., The role of automatic computer-aided surgical trajectory planning in improving the expected safety of stereotactic neurosurgery, Int. J. Comput. Assist. Radiol. Surg., 2015, 10 (7), 1127–1140.
  35. Vaillant M., Davatzikos C., Taylor R.H., Bryan R.N., A path-planning algorithm for image-guided neurosurgery, CVRMed-MRCAS, 1997, 1205, 467–476.
  36. Vakharia V.N., Duncan J.S., Automation advances in stereoelectroencephalography planning, Neurosurg. Clin. N. Am., 2020, 31 (3), 407–419.
  37. Van Der Walt S., Schönberger J.L., Nunez-Iglesias J., Boulogne F., Warner J.D., … Yu T., Scikit-image: Image processing in Python, PeerJ, 2014, 2, e453.
  38. Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., …, Vázquez-Baeza Y., SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nat. Methods, 2020, 17 (3), 261–272.
  39. Xu H., Lasso A., Vikal S., Guion P., Krieger A., …, Fichtinger G., MRI-guided robotic prostate biopsy: A clinical accuracy validation, Med. Image Comput. Comput. Assist. Interv., 2010, 13 (Pt 3), 383–391.
  40. Zhang X., Lin D., Pforsich H., Lin V.W., Physician workforce in the United States of America: Forecasting nationwide shortages, Hum. Resour. Health, 2020, 18 (1), 8.
DOI: https://doi.org/10.37190/abb/208611 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 27 - 37
Submitted on: May 30, 2025
Accepted on: Jul 24, 2025
Published on: Dec 11, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Adam Ciszkiewicz, Jakub Urban, Grzegorz Ziółkowski, Celina Pezowicz, Ewelina Świątek-Najwer, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.