References
- A
bu -Dakka F.J., Rubio F., Valero F., Mata V., Evolutionary indirect approach to solving trajectory planning problem for industrial robots operating in workspaces with obstacles, Eur. J. Mech. A Solids, 2013, 42, 210–218. - B
adawi A.M., El -Mahdy M.A., Path planning simulation for 3D ultrasound guided needle biopsy system, Proc. Midwest Symp. Circuits Syst., 2003, 1, 345–347. - B
runenberg E.J.L., Vilanova A., Visser -Vandewalle V., Temel Y., Ackermans L., Platel B., Ter Haar Romeny B.M., Automatic trajectory planning for deep brain stimulation: A feasibility study, In Med. Image Comput. Comput. Assist. Interv. – MICCAI, 2007, 4791, 584–592. - C
hristou A.S., Amalou A., Lee H., Rivera J., Li R., Kassin M.T., ..., Wood B.J., Image-guided robotics for standardized and automated biopsy and ablation, Semin. Interv. Radiol., 2021, 38 (5), 565–575. - C
iszkiewicz A., Milewski G., Path planning for minimally-invasive knee surgery using a hybrid optimization procedure, Comput. Methods Biomech. Biomed. Engin., 2018, 21 (1), 47–54. - C
iszkiewicz A., Lorkowski J., Milewski G., Differential evolution and cost-maps for needle path planning in Baker’s cyst aspiration, Acta Bioeng. Biomech., 2022, 24 (4). - D
e Baere T., Roux C., Noel G., Delpla A., Deschamps F., Varin E., Tselikas L., Robotic assistance for percutaneous needle insertion in the kidney: Preclinical proof on a swine animal model, Eur. Radiol. Exp., 2022, 6 (1), 13. - D
rozd D., Ciszkiewicz A., Fast segmentation of convex cyst-like structures in gelatin soft tissue phantoms under ultrasound imaging with artifacts and limited training samples, Adv. Sci. Technol. Res. J., 2024, 18 (4), 89–96. - F
ong A.J., Stewart C.L., Lafaro K., La Rocca C.J., Fong Y., Femino J.D., Crawford B., Robotic assistance for quick and accurate image-guided needle placement, Updates Surg., 2021, 73 (3), 1197–1201. - G
ao F., Han L., Implementing the Nelder-Mead simplex algorithm with adaptive parameters, Comput. Optim. Appl., 2012, 51 (1), 259–277. - G
romniak M., Neidhardt M., Heinemann A., Püschel K., Schlaefer A., Needle placement accuracy in CT-guided robotic post mortem biopsy, Curr. Dir. Biomed. Eng., 2020, 6, 20200031. - H
all W.A., Liu H., Martin A.J., Maxwell R.E., Truwit C.L., Brain biopsy sampling by using prospective stereotaxis and a trajectory guide, J. Neurosurg., 2001, 94 (1), 67–71. - L
eung K.Y.E., Bosch J.G., Localized shape variations for classifying wall motion in echocardiograms, Med. Image Comput. Comput. Assist. Interv. – MICCAI, 2007, 4791, 52–59. - L
iang K., Rogers A.J., Light E.D., Von Allmen D., Smith S.W., Simulation of autonomous robotic multiple-core biopsy by 3D ultrasound guidance, Ultrason. Imaging, 2010, 32 (2), 118–127. - M
ahmoud M.Z., Aslam M., Alsaadi M., Fagiri M.A., Alonazi B., Evolution of robot-assisted ultrasound-guided breast biopsy systems, J. Radiat. Res. Appl. Sci., 2018, 11 (1), 89–97. - M
ajak M., Żuk M., Świątek -Najwer E., Popek M., Pietruski P., Augmented reality visualization for aiding biopsy procedure according to computed tomography based virtual plan, Acta Bioeng. Biomech., 2021, 23 (2). - M
arcus H.J., Vakharia V.N., Sparks R., Rodionov R., Kitchen N., Mc Evoy A.W., …, Duncan J.S., Computer-assisted versus manual planning for stereotactic brain biopsy: A retrospective comparative pilot study, Oper. Neurosurg., 2020, 18 (4), 417–422. - M
ason D., Scaramallion , Mrbean -Bremen , Rhaxton , Suever J., Orfanos D.P., Sentner T., 2024, Pydicom/pydicom: Pydicom 3.0.1 (version v3.0.1) [Software], Zenodo. - M
onfaredi R., Concepcion -Gonzalez A., Acosta Julbe J., Fischer E., Hernandez -Herrera G., Cleary K., Oluigbo C., Automatic path-planning techniques for minimally invasive stereotactic neurosurgical procedures – A systematic review, Sensors, 2024, 24 (16), 5238. - M
oustris G.P., Hiridis S.C., Deliparaschos K.M., Konstantinidis K.M., Evolution of autonomous and semi-autonomous robotic surgical systems: A review of the literature, Int. J. Med. Robot., 2011, 7 (4), 375–392. - N
apalkova L., Rozenblit J.W., Hwang G., Hamilton A.J., Suantak L., An optimal motion planning method for computer-assisted surgical training, Appl. Soft Comput., 2014, 24, 889–899. - N
avkar N.V., Tsekos N.V., Stafford J.R., Weinberg J.S., Deng Z., Visualization and planning of neurosurgical interventions with straight access, Inf. Process. Comput. Assist. Interv., 2010, 6135, 1–11. - P
ietruski P., Majak M., Świątek -Najwer E., Żuk M., Popek M., Świecka M., … Mazurek M., Replacing cutting guides with an augmented reality-based navigation system: A feasibility study in the maxillofacial region, Int. J. Med. Robot., 2023, 19 (3), e2499. - P
hee L., Yuen J., Xiao D., Chan C.F., Ho H., Thng C.H., Ng W.S., Ultrasound guided robotic biopsy of the prostate, Int. J. Humanoid Robot., 2006, 3 (4), 463–483. - Q
ureshi A.H., Ayaz Y., Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments, Robot. Auton. Syst., 2015, 68, 1–11. - S
charll Y., Radojicic N., Laimer G., Schullian P., Bale R., Puncture accuracy of robot-assisted CT-based punctures in interventional radiology: An ex vivo study, Diagnostics, 2024, 14 (13), 1371. - S
hi M., Liu H., Tao G., Fajardo L.L., Stereofluoroscopic image-guided robotic biopsy system, Proc. SPIE, 1999, 193–200. - S
parks R., Vakharia V., Rodionov R., Vos S.B., Diehl B., Wehner T., … Ourselin S., Anatomy-driven multiple trajectory planning (Admtp) of intracranial electrodes for epilepsy surgery, Int. J. Comput. Assist. Radiol. Surg., 2017, 12 (8), 1245–1255. - S
penkelink I.M., Heidkamp J., Avital Y., Fütterer J.J., Evaluation of the performance of robot assisted CT-guided percutaneous needle insertion: Comparison with freehand insertion in a phantom, Eur. J. Radiol., 2023, 162, 110753. - S
tarup -Hansen J., Williams S.C., Funnell J.P., Hanrahan J.G., Islam S., Al -Mohammad A., Hill C.S., Optimising trajectory planning for stereotactic brain tumour biopsy using artificial intelligence: A systematic review, Br. J. Neurosurg., 2023, 1–10. - Ś
wiątek -Najwer E., Majak M., Popek M., Żuk M., “Image to patient” equal-resolution surface registration supported by a surface scanner: Analysis of algorithm efficiency for computer-aided surgery, Int. J. Comput. Assist. Radiol. Surg., 2022, 18 (2), 319–328. - T
anaiutchawoot N., Treepong B., Wiratkapan C., Suthakorn J., A path generation algorithm for biopsy needle insertion in a robotic breast biopsy navigation system, Proc. IEEE ROBIO, 2014, 398–403. - T
reepong B., Tanaiutchawoot N., Wiratkapun C., Suthakorn J., On the design and development of a breast biopsy navigation system, Proc. IEEE BHI, 2014, 273–276. - T
rope M., Shamir R.R., Joskowicz L., Medress Z., Rosenthal G., Mayer A., …, Shoshan Y., The role of automatic computer-aided surgical trajectory planning in improving the expected safety of stereotactic neurosurgery, Int. J. Comput. Assist. Radiol. Surg., 2015, 10 (7), 1127–1140. - V
aillant M., Davatzikos C., Taylor R.H., Bryan R.N., A path-planning algorithm for image-guided neurosurgery, CVRMed-MRCAS, 1997, 1205, 467–476. - V
akharia V.N., Duncan J.S., Automation advances in stereoelectroencephalography planning, Neurosurg. Clin. N. Am., 2020, 31 (3), 407–419. - V
an Der Walt S., Schönberger J.L., Nunez -Iglesias J., Boulogne F., Warner J.D., … Yu T., Scikit-image: Image processing in Python, PeerJ, 2014, 2, e453. - V
irtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., …, Vázquez -Baeza Y., SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nat. Methods, 2020, 17 (3), 261–272. - X
u H., Lasso A., Vikal S., Guion P., Krieger A., …, Fichtinger G., MRI-guided robotic prostate biopsy: A clinical accuracy validation, Med. Image Comput. Comput. Assist. Interv., 2010, 13 (Pt 3), 383–391. - Z
hang X., Lin D., Pforsich H., Lin V.W., Physician workforce in the United States of America: Forecasting nationwide shortages, Hum. Resour. Health, 2020, 18 (1), 8.