Have a personal or library account? Click to login
A kinematic model of a humanoid lower limb exoskeleton with pneumatic actuators Cover

A kinematic model of a humanoid lower limb exoskeleton with pneumatic actuators

Open Access
|Apr 2022

References

  1. Agarwal Priyanshu, Deshpande Ashish A., Exoskeletons: State-of-the-Art, Design, Challenges, and Future Directions, Human Performance Optimization, 2018, DOI: 10.1093/oso/9780190455132.003.0011.
  2. Berbyuk V.E., Lytvyn B.A., Mathematical modeling of human walking on the basis of optimization of controlled processes in biodynamical systems, J. Math. Sci., 2001, 104, 1575–1586, https://doi.org/10.1023/A:1011352207020
  3. Caldwell Darwin G., Medrano-Cerda G.A., Bowler C.J., Investigation of bipedal robot locomotion using pneumatic muscle actuators, Proceedings – IEEE International Conference on Robotics and Automation, 1997, 1, 799–804, DOI: 10.1109/ROBOT.1997.620132.
  4. Daerden F., Lefeber D., Verrelst B., Van Ham R., Pneumatic artificial muscles: Actuators for robotics and automation, International Conference on Advanced Intelligent Mechatronics, Proceedings, 2001, 2, 738–743, DOI: 10.1109/AIM.2001.936758.
  5. Głowiński S., Krzyżyński T., Modelling of the ejection process in a symmetrical flight, Journal of Theoretical and Applied Mechanics, 2013, 51 (3), 775–785.
  6. Głowiński S., Łosiński, .; Kowiański P., Waśkow M., Bryndal A., Grochulska A., Inertial Sensors as a Tool for Diagnosing Discopathy Lumbosacral Pathologic Gait: A Preliminary Research, Diagnostics, 2020, 10, 342.
  7. Głowiński S., Obst M., Majdanik S., Potocka-Banaś B., Dynamic Model of a Humanoid Exoskeleton of a Lower Limb with Hydraulic Actuators, Sensors, 2021, 21, 10, 3432.
  8. Grosu V., Rodriguez-Guerrero C., Grosu S., Vanderborght B., Lefeber D., Design of smart modular variable stiffness actuators for robotic-assistive devices, IEEE/ASME Trans. Mechatron., 2017, 22, 1777–1785.
  9. Hamdi, Mohammad.; Awad, Mohammed, Ibrahim.; Abdelhammed, Magdy M.; Tolbah, Farid A.: Lower limb gait activity recognition using Inertial Measurement Units for rehabilitation robotics, Advanced Robotics (ICAR), 2015, DOI: 10.1109/ICAR.2015.7251474.
  10. Huang Tu X., He J., Design and evaluation of the RUPERT wearable upper extremity exoskeleton robot for clinical and in-home therapies, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46, 926–935, DOI: 10.1109/TSMC.2015.2497205.
  11. Hunter L.C., Hendrix E.C., Dean J.C., The cost of walking downhill: Is the preferred gait energetically optimal?, Journal of Biomechanics, 2010, 43 (10), 1910–1915, DOI: 10.1016/j.jbiomch.2010.03.030.
  12. Inertia Technology: ProMove MINI, URL https://inertiatechnology.com/product/motion-capture-promove-mini/ (Accessed: 10.06.2021).
  13. Jacob, Caroline E.M.; Kluge F., Kugler P.F.-X., Estimation of the Knee Flexion-Extension Angle During Dynamic Sport Motions Using Body-worn Inertial Sensors, BodyNets 13 Proceedings of the 8th International Conference on Body Area Networks, 2013, 289–295, https://doi.org/10.4108/icst.bodynets.2013.253613
  14. Kazerooni H., Steger R., Huang Lihua, Hybrid control of the Berkeley Lower Extremity Exoskeleton (BLEEX), International Journal of Robotics Research, 2006, 25, https://doi.org/10/1177/0278364906065505
  15. Kobielarz M., Szotek S., Głowacki M., Dawidowicz J., Pezowicz C., Qualitative and quantitative assessment of collagen and elastin in annulus fibrosus of the physiologic and scoliotic intervertebral discs, J. Mech. Behav. Biomed. Mater., 2016, 62, 45–56, DOI: 10.1016/j.jmbbm.2016.04.033.
  16. Laroche, Dain P.; Cook, Summer B., Mackala K., Strength Asymmetry Increases Gait Asymmetry and Variability in Older Women, Med. Sci. Sport. Exerc., 2012, 44, 11, 2172–2181, DOI: 10.1249/MSS.0b013e31825e1d31.
  17. Leclair J., Pardoel S., Helal A., Doumit M., Development of an unpowered ankle exoskeleton for walking assist, Disabil. Rehabil. Assist. Technol., 2020, 15 (1), 1–13, DOI: 10.1080/17483107.2018.1494218.
  18. Li I. Hsum; Lin, Yi Shan; Lee, Lian Wang; Lin, Wei Ting: Design, manufacturing, and control of a pneumatic-driven passive robotic gait training system for muscle-weakness in a lower limb, Sensors, 2021, 21 (20), 6709, DOI: 10.3390/s21206709.
  19. Liu Q., Zuo J., Zhu C., Xie S.Q., Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art, Future Generation Computer Systems, 2020, 113, 620–634, https://doi.org/10/1016/j.future.2020.06.046
  20. Mackay G., Injury to pedestrians, A Rep. Road Accid. Res. Proj. to Sci. Res. Counc., 1972, 3, 1–26.
  21. Milanowski H., Pilat A., Comparison of Identified and SimScape Model of Human Leg Motion, 2020 International Conference Mechatronic Systems and Materials (MSM), IEEE, 2020 – ISBN 978-1-7281-6956-9, 1–6, DOI: 10.1109/MSM49833.2020.9201736.
  22. Norris J.A., Granata K.P., Mitros M.R., Byrne E.M., Marsh A.P., Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults, Gait and Posture, 2007, 35 (4), 620–627, DOI: 101016/j.gaitpost.2006.07.002.
  23. Onyshko S., Winter D.A., A mathematical model for the dynamics of human locomotion, J. Biomech., 1980, 13, 4, DOI: 10.1016/0021-9290(80)90016-0.
  24. Petre I., Deaconescu A., Rogozea L., Deaconescu T.I., Orthopaedic Rehabilitation Device Actuated with Pneumatic Muscles, International Journal of Advanced Robotic Systems, 2014, https://doi.org/10.5772/58693.
  25. Pons J.L. (Ed.), Wearable Robots, John Wiley & Sons, Ltd., Chichester, UK, 2008, ISBN 9780470987667.
  26. Ptak M., Pedestrian safety: a new method to assess pedestrian kinematics, Transport, 2019, 34, 41–51.
  27. Rocon E., Pons J.L., Exoskeletons in Rehabilitation Robotics, Springer Tracts in Advanced Robotics, 69. Berlin, Heidelberg, Springer, Berlin–Heidelberg, 2011, ISBN 978-3-642-17658-6.
  28. Rojek A., Mika A., Oleksy Ł., Stolarczyk A., Kielnar R., Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled Trial, Front. Neurol., 2020, 10, 1344, DOI: 10.3389/fneur.2019.01344.
  29. Sawicki G.S., Ferris D.P., A pneumatically powered kneeankle-foot orthosis (KAFO) with myoelectric activation and inhibition, J. Neuroeng. Rehab., 2009, 6, 23–29, DOI: 10.1186/1743-000306-23.
  30. Shaheen R., Doumit M., Helal A., Design and characterization of a hyperelastic tubular soft composite, J. Mech. Behav. Biomed. Mater., 2017, 75, 228–235, DOI: 10.1016/j.jmbbm.2017.07.031.
  31. Shorter K.A., Kogler G.F., Loth E., Durfee W.K., Hsiao-Wecksler E.T., A portable powered ankle-foot orthosis for rehabilitation, J. Rehabil. Res. Dev., 2011, 48 (4), 459–472, DOI: 10.1682/jrrd.2010.04.0054.
  32. Tondu B., Modelling of the McKibben artificial muscle: A review, Journal of Intelligent Material Systems and Structures, 2012, 23 (3), 225–253, DOI: 10.1177/1045389X11435435.
  33. Valayil, Tony Punnoose; Augustine, Rose Shaji., Kinematics and workspace analysis of a robotic device for performing rehabilitation therapy of upper limb in stroke-affected patients, Acta of Bioeng. Biomech., 2021, 23 (3), 175–189, PMID: 34978313.
  34. Vaughan C.L., Biomechanics of running gait, Crit. Rev. Biomed. Eng., 1984, 12 (1), 1–48, PMID: 6394212.
  35. Veale, Allan Joshua; Xie, Shane Quan, Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies, Med. Eng. Phys., 2016, 38 (4), 317–325, DOI: 10.1016/j.medengphy.2016.01.010.
  36. Woernle C., Med. Mehrkörpersysteme: Eine Einführung in die Kinematik und Dynamik von Systemen starrer Körper, Springer, 2011, ISBN-10:3662466864.
  37. Wu Ge, Siegler Sorin, Allard P., Kirtley C., Leardini A., Rosenbaum D., Whittle M., D’Lima D.D., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I: ankle, hip, and spine, J. Biomech., 2002, 35 (4), 543–548, DOI: 10.1016/s0021-9290(01)00222-6.
  38. Ye, Xin; Chen, Chunjie; Shi, Yanguo; Chen, Lingxing; Wang, Zhuo; Zhang, Zhewen; Liu, Yida; Wu, Xinyu, A Time Division Multiplexing Inspired Lightweight Soft Exoskeleton for Hip and Ankle Joint Assistance, Micromachines, 2021, 12 (10), 1150, DOI: 10.22290/mi12101150.
  39. Zhang, Jia Fan; Yang, Can Jun; Chen, Ying; Zhang, Yu; Dong, Yi Ming, Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton, Mechatronics, 2008, 18 (8), 448–457, DOI: 10.1016/j.mechatronics.2008.02.006.
  40. Żuk M., Pezowicz C., Kinematic Analysis of a Six-Degrees-of-Freedom Model Based on ISB Recommendation: A Repeatability Analysis and Comparison with Conventional Gait Model, Appl. Bionics Biomech., 2015, 503713, DOI: 10.1155/2015/503713.
DOI: https://doi.org/10.37190/abb-01991-2021-05 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 145 - 157
Submitted on: Nov 23, 2021
|
Accepted on: Feb 11, 2022
|
Published on: Apr 1, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Sebastian Głowiński, Mariusz Ptak, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.