Have a personal or library account? Click to login
Eco-Friendly Bacterial Strains as Corrosion Inhibitors for Mild Steel in the Red Sea Water Cover

Eco-Friendly Bacterial Strains as Corrosion Inhibitors for Mild Steel in the Red Sea Water

Open Access
|Sep 2025

References

  1. Al-Fozan SA, Malik AU. Effect of seawater level on corrosion behavior of different alloys. Desalination. 2008 Aug;228(1-3):61-67. https://doi.org/10.1016/j.desal.2007.08.007
  2. Alotaibi F, Rafie M, Almubarak T, Alomair A. Insights into H2S Scavengers and Corrosion Inhibitor Interactions for Sour Crude Applications. Paper presented at the International Petroleum Technology Conference; 2024 Feb 12; Dhahran (Saudi Arabia). 2024;D021S070R005. https://doi.org/10.2523/iptc-24603-ms
  3. Ansari TQ, Luo JL, Shi SQ. Modeling the effect of insoluble corrosion products on pitting corrosion kinetics of metals. NPJ Mater Degrad. 2019 Jul;3:28. https://doi.org/10.1038/s41529-019-0090-5
  4. ASTM G31-21. Standard guide for laboratory immersion corrosion testing of metals. West Conshohocken (USA): ASTM International; 2021. https://doi.org/10.1520/G0031-21
  5. Baird RB, Eaton AD, Rice EW. Standard methods for the examination of water and wastewater, 23rd edition. Washington (USA): American Public Health Association; 2017.
  6. Barberán A, Ladau J, Leff JW, Pollard KS, Menninger HL, Dunn RR, Fierer N. Continental-scale distributions of dust-associated bacteria and fungi. Proc Natl Acad Sci USA. 2015 May;112(18):5756–5761. https://doi.org/10.1073/pnas.1420815112
  7. Beech IB, Sunner J. Biocorrosion: Towards understanding interactions between biofilms and metals. Curr opinion Biotechnol 2004 Jun;15(3):181–186. https://doi.org/10.1016/j.copbio.2004.05.001
  8. Castaño-González JG, Berrío LF, Echeverría F, Correa E, Zuleta AA. Methods for evaluation of corrosion rate on magnesium alloys: A review. Rev Fac Ing Univ Antioquia. 2024;(112):111–131.https://doi.org/10.17533/udea.redin.20240102
  9. Chang N, Liu K, Zhao Y, Deng Y, Ge H. Inhibition performance and mechanism of poly (citric acid–glutamic acid) on carbon steel corrosion in simulated seawater. Appl. Sci. 2024;14(20):9465. https://doi.org/10.3390/app14209465
  10. Chen J, Jia Y, Sun Y, Liu K, Zhou C, Liu C, Li D, Liu G, Zhang C, Yang T, et al. Global marine microbial diversity and its potential in bioprospecting. Nature. 2024 Sep;633(8029):371-379. https://doi. org/10.1038/s41586-024-07891-2
  11. Chohan IM, Ahmad A, Sallih N, Bheel N, Salilew WM, Almaliki AH. Effect of seawater salinity, pH, and temperature on external corrosion behavior and microhardness of offshore oil and gas pipeline: RSM modelling and optimization. Sci Rep. 2024 Jul;14(1):16543. https://doi.org/10.1038/s41598-024-67463-2
  12. Chugh B, Singh AK, Thakur S, Pani B, Lgaz H, Chung IM, Jha R, Ebenso EE. Comparative investigation of corrosion-mitigating behavior of thiadiazole-derived bis-schiff bases for mild steel in acid medium: Experimental, theoretical, and surface study. ACS Omega. 2020 Jun;5(23):13503–13520. https://doi.org/10.1021/acsomega.9b04274
  13. Dalmaso GZ, Ferreira D, Vermelho AB. Marine extremophiles: A source of hydrolases for biotechnological applications. Mar Drugs. 2015 Apr;13(4):1925–1965. https://doi.org/10.3390/md13041925
  14. Dhawan SK, Bhandari H, Ruhi G, Bisht BM, Sambyal P. Corrosion preventive materials and corrosion testing. Boca Raton (USA): CRC Press; 2020. https://doi.org/10.1201/9781315101217
  15. Dou W, Xu D, Gu T. Biocorrosion caused by microbial biofilms is ubiquitous around us. Microb Biotechnol 2021 May;14(3):803–805. https://doi.org/10.1111/1751-7915.13690
  16. El Ibrahimi B, Berdimurodov E. Chapter 5 – Weight loss technique for corrosion measurements. In: Aslam J, Verma C, Mustansar Hussain C, editors. Electrochemical and analytical techniques for sustainable corrosion monitoring. Amsterdam (The Netherlands): Elsevier; 2023. p. 81–90. https://doi.org/10.1016/B978-0- 443-15783-7.00011-6
  17. Garrity GM. A new genomics-driven taxonomy of Bacteria and Archaea: Are we there yet? J Clinc Microbiol 2016 Aug;54(8):1956– 1963. https://doi.org/10.1128/jcm.00200-16
  18. Ghazaee A, Pour-Ali S, Mahdavi S, Tavangar R, Khalili M. Corrosion inhibition of steel rebar in chloride-contaminated concrete pore solution: Ecofriendly glutamic acid inhibitor and its synergy with galvanized coating. Inorg Chem Commun. 2024 Sep;167:112832. https://doi.org/10.1016/j.inoche.2024.112832
  19. Guo Z, Pan S, Liu T, Zhao Q, Wang Y, Guo N, Chang X, Liu T, Dong Y, Yin Y. Bacillus subtilis inhibits Vibrio natriegens-induced corrosion via biomineralization in seawater. Front Microbiol. 2019 May;10:1111. https://doi.org/10.3389/fmicb.2019.01111
  20. Hiraishi A, Nagashima KV, Matsuura K, Shimada K, Takaichi S, Wakao N, Katayama Y. Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol. 1998 Oct;48(4):1389-1398. https://doi. org/10.1099/00207713-48-4-1389
  21. Holkar SK, Bhanbhane VC, Ghotgalkar PS, Markad HN, Lodha TD, Saha S, Banerjee K. Characterization and bioefficacy of grapevine bacterial endophytes against Colletotrichum gloeosporioides causing anthracnose disease. Front Microbiol. 2024 Dec;15:1502788. https://doi.org/10.3389/fmicb.2024.1502788
  22. Hou X, Gao L, Cui Z, Yin J. Corrosion and protection of metal in the seawater desalination. IOP Conf Ser Earth Environ Sci. 2018;108(2):022037. https://doi.org/10.1088/1755- 1315/108/2/022037
  23. Ismail KM, Gehrig T, Jayaraman A, Wood TK, Trandem K, Arps PJ, Earthman JC. Corrosion control of mild steel by aerobic bacteria under continuous flow conditions. Corrosion. 2002 May;58(05):417–423. https://doi.org/10.5006/1.3277631
  24. Jayaraman A, Cheng ET, Earthman JC, Wood TK. Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion. Appl Microbiol Biotechnol. 1997a Jul;48(1):11–17. https://doi.org/10.1007/s002530051007
  25. Jayaraman A, Cheng ET, Earthman JC, Wood TK. Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms. J Ind Microbiol Biotechnol. 1997b Jun;18(6):396–401. https://doi.org/10.1038/sj.jim.2900396
  26. Jiang Q, Wang S, Zhang C, Sheng Z, Zhang H, Feng R, Ni Y, Tang X, Gu Y, Zhou X, et al. Active oxygen species mediate the iron-promoting electrocatalysis of oxygen evolution reaction on metal oxyhydroxides. Nat Commun. 2023 Oct;14(1):6826. https://doi.org/10.1038/s41467-023-42646-z
  27. Karn SK, Fang G, Duan J. Bacillus sp. acting as dual role for corrosion induction and corrosion inhibition with carbon steel (CS). Front Microbiol. 2017 Oct 24;8:2038. https://doi.org/10.3389/fmicb.2017.02038
  28. Kartsonakis IA, Charitidis CA. Corrosion protection evaluation of mild steel: The role of hybrid materials loaded with inhibitors. Appl Sci. 2020 Sep;10(18):6594. https://doi.org/10.3390/app10186594
  29. Little BJ, Lee JS. Microbiologically influenced corrosion. In: Revie RW, editor. Oil and gas pipelines, Hoboken (USA): John Wiley & Sons, Inc.; 2015. p. 387–398. https://doi. org/10.1002/9781119019213.ch27
  30. Liu H, Gu T, Lv Y, Asif M, Xiong F, Zhang G, Liu H. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water. Corros Sci. 2017 Mar;117:24–34. https://doi.org/10.1016/j.corsci.2017.01.006
  31. Margesin R, Schinner F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles. 2001 Apr;5(2):73–83. https://doi.org/10.1007/s007920100184
  32. Marsili E, Kjelleberg S, Rice SA. Mixed community biofilms and microbially influenced corrosion. Microbiol Aust. 2018 Aug 10;39(3):152–157. https://doi.org/10.1071/MA18046
  33. Nagaoka A, Nose K, Nokami K, Kajimura H. The role of micro pits in the initiation process of crevice corrosion of SUS304 stainless steel in an aqueous chloride solution. Mater Trans. 2022 Mar;63(3):335–342. https://doi.org/10.2320/matertrans.mt-c2021007
  34. Pal MK, Lavanya M. Microbial Influenced Corrosion: Understanding bioadhesion and biofilm formation. J Bio Tribo Corros. 2022;8:76. https://doi.org/10.1007/s40735-022-00677-x
  35. Patrascu I, Vasilescu E, Gatin E, Cara-Ilici RR. Corrosion of biomaterials used in dental reconstruction dentistry. London (UK): IntechOpen; 2014. https://doi.org/10.5772/57322
  36. Petersen RB, Melchers RE. Pitting corrosion of mild steel in long-term contact with particulate media in seawater. Corros. 2023 Sep;79(9):1040–1051. https://doi.org/10.5006/4322
  37. Potekhina JS, Sherisheva NG, Povetkina LP, Pospelov AP, Rakitina TA, Warnecke F, Gottschalk G. Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Appl Microbiol and Biotechnol. 1999 Nov;52:639–646. https://doi.org/10.1007/s002530051571
  38. Pradhan P, Tamang JP. Phenotypic and genotypic identification of bacteria isolated from traditionally prepared dry starters of the Eastern Himalayas. Front Microbiol. 2019 Nov;10:2526. https://doi. org/10.3389/fmicb.2019.02526
  39. Priyotomo G, Nuraini L, Prifiharni S, Sundjono S. Corrosion behavior of mild steel in seawater from Karangsong & Eretan of West Java Region, Indonesia. Jurnal Kelautan: IJMST. 2018 Dec 28;11(2):184-91. https://doi.org/10.21107/jk.v11i2.4335
  40. Rajput A, Park JH, Hwan Noh S, Kee Paik J. Fresh and sea water immersion corrosion testing on marine structural steel at low temperature. Sh Offshore Struct. 2020 Jul;15(6):661–669. https://doi.org/10.1080/17445302.2019.1664128
  41. Răuţă DI, Matei E, Avramescu SM. Recent development of corrosion inhibitors: Types, mechanisms, electrochemical behavior, efficiency, and environmental impact. Technologies. 2025;13(3):103. https://doi.org/10.3390/technologies13030103
  42. Revie RW, Uhlig HH. Corrosion and corrosion control: an introduction to corrosion science and engineering. Hoboken (USA): John Wiley & Sons, Inc.; 2008. https://doi.org/10.1002/9780470277270
  43. Ricky E, Lugwisha E, Philip J. Corrosion inhibition of mild steel in seawater by 2, 4, 6-triamino-3-pentadecylphenyl acetate derived from cashew nut shell liquid. Tanz J Sci. 2021 Feb;47(1):112–122.
  44. Roberge PR. Corrosion basics: An introduction. Houston (USA): NACE International; 2018. https://doi.org/10.5006/37630
  45. Royani A, Hanafi M, Mubarak NM, Priyotomo G, Aigbodion VS, Musabikha S, Manaf A. Unveiling green corrosion inhibitor of Aloe vera extracts for API 5L steel in seawater environment. Sci Rep. 2024 Jun;14(1):14085. https://doi.org/10.1038/s41598-024- 64715-z
  46. Shaban MM, El Basiony NM, Radwan AB, El-Katori EE, Abu-Rayyan A, Bahtiti NH, Abdou MM. Electrochemical investigation of c-steel corrosion inhibition, in silico, and sulfate-reducing bacteria investigations using pyrazole derivatives. ACS Omega. 2023 Aug;8(33):30068–30080. https://doi.org/10.1021/acsomega.3c02333
  47. Song Y, Jiang G, Chen Y, Zhao P, Tian Y. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Sci Rep. 2017 Jul;7(1):6865. https://doi.org/10.1038/s41598-017- 07245-1
  48. Stancu MM. Role of Indigenous bacteria in corrosion of two types of carbon steel. Microorganisms. 2022 Dec;10(12):2451. https://doi.org/10.3390/microorganisms10122451
  49. Taheri P, Milošev I, Meeusen M, Kapun B, White P, Kokalj A, Mol A. On the importance of time-resolved electrochemical evaluation in corrosion inhibitor-screening studies. NPJ Mater Degrad. 2020 Apr;4:12. https://doi.org/10.1038/s41529-020-0116-z
  50. Tripathi AK, Thakur P, Saxena P, Rauniyar S, Gopalakrishnan V, Singh RN, Gadhamshetty V, Gnimpieba EZ, Jasthi BK, Sani RK. Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion. Front Microbiol. 2021 Oct;12:754140. https://doi.org/10.3389/fmicb.2021.754140
  51. Umoren SA, Solomon MM, Saji VS. Corrosion inhibitors for sour oilfield environment (H2S corrosion). In: Saji VS, Umoren SA, editors. Corrosion inhibitors in the oil and gas industry. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. KGaA; 2020. https://doi.org/10.1002/9783527822140.ch8
  52. Vigdorovich V, Tsygankova L, Shel N, Alshikha N. Universalism of inhibitors against hydrogen sulfide and carbon dioxide corrosion of carbon steel. InE3S Web of Conferences 2021;225:05001. https://doi.org/10.1051/e3sconf/202122505001
  53. Vignesh K, Sujithra S, Vajjiravel M, Narenkumar J, Das B, AlSalhi MS, Devanesan S, Rajasekar A, Malik T. Synthesis of novel N-substituted tetrabromophthalic as corrosion inhibitor and its inhibition of microbial influenced corrosion in cooling water system. Sci Rep. 2024 Oct;14(1):25408. https://doi.org/10.1038/s41598- 024-76254-8
  54. Watkins PG. The corrosion of mild steel in the presence of two isolates of marine sulphate reducing bacteria [PhD Thesis]. Portsmouth (UK): University of Portsmouth; 1998.
  55. Xu F, Cha QQ, Zhang YZ, Chen XL. Degradation and utilization of alginate by marine Pseudoalteromonas: A review. Appl Environ Microbiol. 2021 Aug;87(17):e00368-21. https://doi.org/10.1128/aem.00368-21
  56. Yan X, Kang S, Xu M, Li P. Corrosion product film of a medium-Mn steel exposed to simulated marine splash zone environment. Materials. 2021 Sep;14(19):5652. https://doi.org/10.3390/ma14195652
  57. Yu X, Al-Saadi S, Zhao XL, Raman RS. Electrochemical investigations of steels in seawater sea sand concrete environments. Materials. 2021 Sep;14(19):5713. https://doi.org/10.3390/ma14195713
DOI: https://doi.org/10.33073/pjm-2025-023 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 289 - 305
Submitted on: May 6, 2025
|
Accepted on: Jul 6, 2025
|
Published on: Sep 16, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 HANAN SAYFAYN, AISHA M. A. TURKUSTANI, HANAA E.A. AMER, RUKAIA M. GASHGARI, AISHA H. AL-MOUBARAKI, ALAA A. ALNAHARI, AHMED AL-HEJIN, NOOR M. BATAWEEL, LAILA A. DAMIATI, RUBA ABDULRAHMAN ASHY, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.