References
- Abaza AF, El Shazly SA, Selim HSA, Aly GSA. Metallo-beta-lactamase producing Pseudomonas aeruginosa in a healthcare setting in Alexandria, Egypt. Pol J Microbiol. 2017 Sep;66(3):297–308. https://doi.org/10.5604/01.3001.0010.4855
- Alav I, Sutton JM, Rahman KM. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother. 2018 Aug;73(8):2003–2020. https://doi.org/10.1093/jac/dky042
- Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen AV, Cheng AA, Liu S, et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020 Jan;48(D1):D517–D525. https://doi.org/10.1093/nar/gkz935
- Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The art of war with Pseudomonas aeruginosa: Targeting Mex efflux pumps directly to strategically enhance antipseudomonal drug efficacy. Antibiotics. 2023;12(8):1304. https://doi.org/10.3390/antibiotics12081304
- Bai Y, Gong YE, Shen F, Li H, Cheng Y, Guo J, Liu G, Ji AF. Molecular epidemiological characteristics of carbapenem-resistant Pseudomonas aeruginosa clinical isolates in southeast Shanxi, China. J Glob Antimicrob Resist. 2024 Mar;36:301–306. https://doi.org/10.1016/j.jgar.2023.12.029
- Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020 Dec;75(12):3491–3500. https://doi.org/10.1093/jac/dkaa345
- Cabrera R, Fernández-Barat L, Vázquez N, Alcaraz-Serrano V, Bueno-Freire L, Amaro R, López-Aladid R, Oscanoa P, Muñoz L, Vila J, et al. Resistance mechanisms and molecular epidemiology of Pseudomonas aeruginosa strains from patients with bronchiectasis. J Antimicrob Chemother. 2022 May;77(6):1600–1610. https://doi.org/10.1093/jac/dkac084
- Chairat S, Ben Yahia H, Rojo-Bezares B, Sáenz Y, Torres C, Ben Slama K. High prevalence of imipenem-resistant and metallo-beta-lactamase-producing Pseudomonas aeruginosa in the Burns Hospital in Tunisia: Detection of a novel class 1 integron. J Chemother. 2019 May;31(3):120–126. https://doi.org/10.1080/1120009x.2019.1582168
- Chen S, Zhou Y, Chen Y, Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018 Sep;34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560
- CLSI. Performance standards for antimicrobial susceptibility testing. 31st ed. CLSI supplement M100. Wayne (USA): Clinical and Laboratory Standards Institute; 2021.
- Çopur Çiçek A, Ertürk A, Ejder N, Rakici E, Kostakoğlu U, Esen Yıldız İ, Özyurt S, Sönmez E. Screening of antimicrobial resistance genes and epidemiological features in hospital and community-associated carbapenem-resistant Pseudomonas aeruginosa infections. Infect Drug Resist. 2021 Apr;14:1517–1526. https://doi.org/10.2147/idr.s299742
- de Paula-Petroli SB, Campana EH, Bocchi M, Bordinhão T, Picão RC, Yamada-Ogatta SF, Carrara-Marroni FE. Early detection of a hypervirulent KPC-2-producing Pseudomonas aeruginosa ST235 in Brazil. J Glob Antimicrob Resist. 2018 Mar;12:153–154. https://doi.org/10.1016/j.jgar.2018.01.014
- del Barrio-Tofiño E, López-Causapé C, Oliver A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int J Antimicrob Agents. 2020 Dec;56(6):106196. https://doi.org/10.1016/j.ijantimi-cag.2020.106196
- Dos Santos PAS, Silva MJA, Gouveia MIM, Lima LNGC, Quaresma AJPG, De Lima PDL, Brasiliense DM, Lima KVB, Rodrigues YC. ‘I he prevalence of metallo-beta-lactamese-(MβL)-producing Pseudomonas aeruginosa isolates in Brazil: A Systematic Review and Meta-Analysis. Microorganisms. 2023 Sep;11(9):2366. https://doi.org/10.3390/microorganisms11092366
- Escudero JA, Loot C, Nivina A, Mazel D. The Integron: Adaptation on demand. Microbiol Spectr. 2015;3(2):MDNA3-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0019-2014
- Gadaime NK, Haddadin RN, Shehabi AA, Omran IN. Antimicrobial resistance and carbapenemase dissemination in Pseudomonas aeruginosa isolates from Libyan hospitals: A call for surveillance and intervention. Libyan J Med. 2024 Dec;19(1):2344320. https://doi.org/10.1080/19932820.2024.2344320
- Girlich D, Naas T, Nordmann P. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2004;48(6):2043–2048. https://doi.org/10.1128/aac.48.6.2043-2048.2004
- Goli HR, Nahaei MR, Rezaee MA, Hasani A, Samadi Kafil H, Aghazadeh M, Sheikhalizadeh V. Contribution of mexAB-oprM and mexXY (-oprA) efflux operons in antibiotic resistance of clinical Pseudomonas aeruginosa isolates in Tabriz, Iran. Infect Genet Evol. 2016 Nov;45:75–82. https://doi.org/10.1016/j.meegid.2016.08.022
- González-Bello C, Rodríguez D, Pernas M, Rodríguez Á, Colchón E. β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J Med Chem. 2020 Mar;63(5):1859–1881. https://doi.org/10.1021/acs.jmedchem.9b01279
- Hall BG, Nisbet J. Building phylogenetic trees from genome sequences with kSNP4. Mol Biol Evol. 2023 Nov;40(11):msad235. https://doi.org/10.1093/molbev/msad235
- Horna G, López M, Guerra H, Saénz Y, Ruiz J. Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa. Sci Rep. 2018 Nov;8(1):16463. https://doi.org/10.1038/s41598-018-34694-z
- Ji J, Wang J, Zhou Z, Wang H, Jiang Y, Yu Y. Multilocus sequence typing reveals genetic diversity of carbapenem- or ceftazidime-non-susceptible Pseudomonas aeruginosa in China. Antimicrob Agents Chemother. 2013;57(11):5697–5700. https://doi.org/10.1128/aac.00970-13
- Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018 Sep;3:124. https://doi.org/10.12688/wellcomeopenres.14826.1
- Kadri SS, Adjemian J, Lai YL, Spaulding AB, Ricotta E, Prevots DR, Palmore TN, Rhee C, Klompas M, Dekker JP, et al. Difficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis. 2018 Nov;67(12):1803–1814. https://doi.org/10.1093/cid/ciy378
- Karampatakis T, Zarras C, Pappa S, Vagdatli E, Iosifidis E, Roilides E, Papa A. Emergence of ST39 carbapenem-resistant Klebsiella pneumoniae producing VIM-1 and KPC-2. Microb Pathog. 2022 Jan;162:105373. https://doi.org/10.1016/j.micpath.2021.105373
- Ladunga I. Installing, maintaining, and using a local copy of BLAST for compute cluster or workstation use. Curr Protoc Bioinformatics. 2018;63(1):e54. https://doi.org/10.1002/cpbi.54
- Li J, Tang M, Liu Z, Wei Y, Xia F, Xia Y, Hu Y, Wang H, Zou M. Molecular characterization of extensively drug-resistant hypervirulent Pseudomonas aeruginosa isolates in China. Ann Clin Microbiol Antimicrob. 2024 Feb;23(1):13. https://doi.org/10.1186/s12941-024-00674-7
- Li X, Zhang X, Cai H, Zhu Y, Ji J, Qu T, Tu Y, Zhou H, Yu Y. Over-expression of blaGES-1 due to a strong promoter in the class 1 integron contributes to decreased ceftazidime-avibactam susceptibility in carbapenem-resistant Pseudomonas aeruginosa ST235. Drug Resist Updat. 2023 Jul;69:100973. https://doi.org/10.1016/j.drup.2023.100973
- Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610. https://doi.org/10.1128/cmr.00040-09
- Liu Y, Zhu R, Liu X, Li D, Guo M, Fei B, Ren Y, You X, Li Y. Effect of piperine on the inhibitory potential of MexAB-OprM efflux pump and imipenem resistance in carbapenem-resistant Pseudomonas aeruginosa. Microb Pathog. 2023 Dec;185:106397. https://doi.org/10.1016/j.micpath.2023.106397
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001 Dec;25(4):402–408. https://doi.org/10.1006/meth.2001.1262
- Lorusso AB, Carrara JA, Barroso CDN, Tuon FF, Faoro H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int J Mol Sci. 2022;23(24):15779. https://doi.org/10.3390/ijms232415779
- Ma W, Guo J, Deng C, Huang X, Sun Y, Xu L, Qin Q. Characterization of the chromosomally located metallo-β-Lactamase genes blaIMP-45 and blaVIM-2 in a carbapenem-resistant Pseudomonas aeruginosa clinical isolate. Microb Drug Resist. 2024 Oct;30(10):422–431. https://doi.org/10.1089/mdr.2024.0059
- Neves CS, Moura LCRV, Da Costa Lima JL, Maciel MAV. Clinical outcomes of intensive care unit patients infected with multidrug-resistant gram-negative bacteria treated with ceftazidime/avibactam and ceftolozane/tazobactam. Braz J Microbiol. 2024 Mar;55(1):333–341. https://doi.org/10.1007/s42770-023-01193-x
- Ocampo-Sosa AA, Cabot G, Rodríguez C, Roman E, Tubau F, Macia MD, Moya B, Zamorano L, Suárez C, Peña C, et al. Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob Agents Chemother. 2012 Apr;56(4):1703–1713.https://doi.org/10.1128/aac.05451-11
- Oliver A, Rojo-Molinero E, Arca-Suarez J, Beşli Y, Bogaerts P, Cantón R, Cimen C, Croughs PD, Denis O, Giske CG, et al. Pseudomon asaeruginosa antimicrobial susceptibility profiles, resistance mechanisms and international clonal lineages: Update from ESGARS-ESCMID/ISARPAE Group. Clin Microbiol Infect. 2024;30(4):469–480. https://doi.org/10.1016/j.cmi.2023.12.026
- Pan Y, Zhao M, Liu W, Jia W, Li G. Study on molecular epidemiology of carbapenem resistant Pseudomonas aeruginosa and related genes of quorum sensing signal system. Microb Pathog. 2024 Nov;196:106899. https://doi.org/10.1016/j.micpath.2024.106899
- Porto A, Ayala J, Gutkind G, Di Conza J. A novel OXA-10-like beta-lactamase is present in different Enterobacteriaceae. Diagn Microbiol Infect Dis. 2010;66(2):228–229. https://doi.org/10.1016/j.diagmicrobio.2009.09.010
- Protonotariou E, Meletis G, Vlachodimou N, Malousi A, Tychala A, Katsanou C, Daviti A, Mantzana P, Skoura L. Rapid reversal of carbapenemase-producing Pseudomonas aeruginosa epidemiology from blaVIM-to blaNDM-harbouring isolates in a Greek tertiary care hospital. Antibiotics. 2024;13(8):762. https://doi.org/10.3390/antibi-otics13080762
- Queenan AM, Bush K. Carbapenemases: ‘The versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440–458. https://doi.org/10.1128/cmr.00001-07
- Rossi Gonçalves I, Dantas RCC, Ferreira ML, Batistão DWDF, Gontijo-Filho PP, Ribas RM. Carbapenem-resistant Pseudomonas aeruginosa: Association with virulence genes and biofilm formation. Braz J Microbiol. 2017;48(2):211–217. https://doi.org/10.1016/j.bjm.2016.11.004
- Roy Chowdhury P, Scott M, Worden P, Huntington P, Hudson B, Karagiannis T, Charles IG, Djordjevic SP. Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa. Open Biol. 2016 Mar;6(3):150175. https://doi.org/10.1098/rsob.150175
- Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067. https://doi.org/10.1155/2016/2475067
- Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: A microbiological and clinical perspective. Infection. 2024 Aug;52(4):1235–1268. https://doi.org/10.1007/s15010-024-02313-x
- Seupt A, Schniederjans M, Tomasch J, Häussler S. Expression of the MexXY aminoglycoside efflux pump and presence of an aminoglycoside-modifying enzyme in clinical Pseudomonas aeruginosa isolates are highly correlated. Antimicrob Agents Chemother. 2020;65(1):e01166–20. https://doi.org/10.1128/aac.01166-20
- Sherrard LJ, Wee BA, Duplancic C, Ramsay KA, Dave KA, Ballard E, Wainwright CE, Grimwood K, Sidjabat HE, Whiley DM, et al. Emergence and impact of oprD mutations in Pseudomonas aeruginosa strains in cystic fibrosis. J Cyst Fibros. 2022 Jan;21(1):e35–e43. https://doi.org/10.1016/j.jcf.2021.03.007
- Silveira MC, Albano RM, Rocha-de-Souza CM, Leão RS, Marques EA, Picão RC, Kraychete GB, de Oliveira Santos IC, Oliveira TRTE, Tavares-Teixeira CB, et al. Description of a novel IncP plasmid harboring blaKPC-2 recovered from a SPM-1-producing Pseudomonas aeruginosa from ST277. Infect Genet Evol. 2022 Aug;102:105302. https://doi.org/10.1016/j.meegid.2022.105302
- Sun Z, Yang F, Ji J, Cao W, Liu C, Ding B, Xu X. Dissecting the genotypic features of a fluoroquinolone-resistant Pseudomonas aeruginosa ST316 sublineage causing ear infections in Shanghai, China. Microb Genom. 2023;9(4):mgen000989. https://doi.org/10.1099/mgen.0.000989
- Tenover FC, Nicolau DP, Gill CM. Carbapenemase-producing Pseudomonas aeruginosa -an emerging challenge. Emerg Microbes Infect. 2022 Dec;11(1):811–814. https://doi.org/10.1080/22221751.2022.2048972
- Tomás M, Doumith M, Warner M, Turton JF, Beceiro A, Bou G, Livermore DM, Woodford N. Efflux pumps, OprD porin, AmpC beta-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 2010 May;54(5):2219–2224. https://doi.org/10.1128/aac.00816-09
- Tran HA, Vu TNB, Trinh ST, Tran DL, Pham HM, Ngo THH, Nguyen MT, Tran ND, Pham DT, Dang DA, et al. Resistance mechanisms and genetic relatedness among carbapenem-resistant Pseudomonas aeruginosa isolates from three major hospitals in Hanoi, Vietnam (2011–15). JAC Antimicrob Resist. 2021 Jul;3(3):dlab103. https://doi.org/10.1093/jacamr/dlab103
- Verdial C, Serrano I, Tavares L, Gil S, Oliveira M. Mechanisms of antibiotic and biocide resistance that contribute to Pseudomonas aeruginosa persistence in the hospital environment. Biomedicines. 2023 Apr;11(4):1221. https://doi.org/10.3390/biomedi-cines11041221
- Wang L, Zhou X, Lu Y, Zhang X, Jiang J, Sun Z, Yin M, Doi Y, Wang M, Guo Q, et al. Levofloxacin-induced MexS mutation triggers imipenem-relebactam resistance in a KPC-producing Pseudomonas aeruginosa. Int J Antimicrob Agents. 2024;63(5):107119. https://doi.org/10.1016/j.ijantimicag.2024.107119
- Wang X, Kong N, Cao M, Zhang L, Sun M, Xiao L, Li G, Wei Q. Comparison of class 2 integron integrase activities. Curr Microbiol. 2021 Mar;78(3):967–978. https://doi.org/10.1007/s00284-021-02352-9
- Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017 Jun;13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595
- Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31(20):3350–3352. https://doi.org/10.1093/bioinformatics/btv383
- Xiu Y, Dai Y, Yin S, Wei Q. Analysis of the class 1 integrons, carbapenemase genes and biofilm formation genes occurrence in Acinetobacter baumannii clinical Isolates. Pol J Microbiol. 2024 May;73(2):189–197. https://doi.org/10.33073/pjm-2024-017
- Zahedi Bialvaei A, Rahbar M, Hamidi-Farahani R, Asgari A, Esmailkhani A, Mardani Dashti Y, Soleiman-Meigooni S. Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microb Pathog. 2021;153:104789. https://doi.org/10.1016/j.micpath.2021.104789
- Zhang P, Hu J, Wu W, Shi W, Jiang Y, Yu Y, Zheng X, Qu T. Evolutionary adaptation of KPC-2-producing Pseudomonas aeruginosa high-risk sequence type 463 in a lung transplant patient. Int J Antimicrob Agents. 2024 Sep;64(3):107279. https://doi.org/10.1016/j.ijantimicag.2024.107279
- Zhang X, Wang L, Li D, Li P, Yuan L, Yang F, Guo Q, Wang M. An IncP-2 plasmid sublineage associated with dissemination of blaIMP-45 among carbapenem-resistant Pseudomonas aeruginosa. Emerg Microbes Infect. 2021;10(1):442–449. https://doi.org/10.1080/22221751.2021.1894903
- Zhao X, Qin J, Chen G, Yang C, Wei J, Li W, Jia W. Whole-genome sequencing, multilocus sequence typing, and resistance mechanism of the carbapenem-resistant Pseudomonas aeruginosa in China. Microb Pathog. 2024 Jul;192:106720. https://doi.org/10.1016/j.mic-path.2024.106720
- Zhu Y, Wang T, Zhu W, Wei Q. Influence of class 2 integron integrase concentration on gene cassette insertion and excision in vivo. Braz J Microbiol. 2023 Jun;54(2):645–653. https://doi.org/10.1007/s42770-023-00926-2