Have a personal or library account? Click to login
Molecular and metabolic characterization of petroleum hydrocarbons degrading Bacillus cereus Cover

Molecular and metabolic characterization of petroleum hydrocarbons degrading Bacillus cereus

Open Access
|Mar 2024

References

  1. Abbasian F, Lockington R, Mallavarapu M, Naidu R. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol. 2015 Jun;176(3):670–699. https://doi.org/10.1007/s12010-015-1603-5
  2. Abdulla KJ, Ali SA, Gatea IH, Hameed NA, Maied SK. Bio-degradation of crude oil using local bacterial isolates. IOP Conf Ser Earth Environ Sci. 2019;467:012173. https://doi.org/10.1088/1755-1315/467/1/012173
  3. Abereton P, Ordinioha B, Mensah-Attipoe J, Toyinbo O. Crude oil spills and respiratory health of clean-up workers: A systematic review of literature. Atmosphere. 2023;14(3):494. https://doi.org/10.3390/atmos14030494
  4. Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU. Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol. 2010 Oct;12(10):2783–2796. https://doi.org/10.1111/j.1462-2920.2010.02248.x
  5. Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO. Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World J Microbiol Biotechnol. 2007;23(8):1149–1159. https://doi.org/10.1007/s11274-007-9345-3
  6. Adipah S. Introduction of petroleum hydrocarbons contaminants and its human effects. J Environ Sci Public Health. 2019;3(1):1–9.
  7. Ahmed S, Kumari K, Singh D. Different strategies and bio-removal mechanisms of petroleum hydrocarbons from contaminated sites. Arab Gulf J Sci Res. 2023 Apr. https://doi.org/10.1108/AGJSR-09-2022-0172
  8. Al-Surrayai T, Yateem A, Al-Kandari R, Al-Sharrah T, Bin-Haji A. The use of Conocarpus lancifolius trees for the remediation of oil-contaminated soils. Soil Sediment Contam: Int J. 2009 Apr;18(3): 354–368. https://doi.org/10.1080/15320380902772661
  9. An X, Li N, Zhang S, Han Y, Zhang Q. Integration of proteome and metabolome profiling to reveal heat stress response and tolerance mechanisms of Serratia sp. AXJ-M for the bioremediation of papermaking black liquor. J Hazard Mater. 2023 May 15;450:131092. https://doi.org/10.1016/j.jhazmat.2023.131092
  10. Arjoon K, Speight JG. Chemical and physical analysis of a petroleum hydrocarbon contamination on a soil sample to determine its natural degradation feasibility. Invent. 2020 Aug;5(3):43. https://doi.org/10.3390/inventions5030043
  11. Arvind M, Bhatt S, Nichith KR. Biodegradation of aromatics such as benzene, toluene and phenol by Pseudomonas strain. Eur J Environ Earth Sci. 2020;1(3). https://doi.org/10.24018/ejgeo.2020.1.3.22
  12. Avanzi IR, Gracioso LH, Baltazar MPG, Karolski B, Perpetuo EA, Nascimento CAO. Aerobic biodegradation of gasoline compounds by bacteria isolated from a hydrocarbon-contaminated soil. Environ Eng Sci. 2015 Dec;32(12):990–997. https://doi.org/10.1089/ees.2015.0122
  13. Basu A, Dixit SS, Phale PS. Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86. Appl Microbiol Biotechnol. 2003 Oct;62(5–6) 579–585. https://doi.org/10.1007/s00253-003-1305-8
  14. Bedics A, Banerjee S, Bóka K, Tóth E, Benedek T, Kriszt B, Táncsics A. Pinisolibacter aquiterrae sp. nov., a novel aromatic hydrocarbon-degrading bacterium isolated from benzene-, and xylene-degrading enrichment cultures, and emended description of the genus Pinisolibacter. Int J Syst Evol Microbiol. 2022 Feb;72(2). https://doi.org/10.1099/ijsem.0.005229
  15. Bilen Ozyurek S, Seyis Bilkay I. Determination of petroleum biodegradation by bacteria isolated from drilling fluid, waste mud pit and crude oil. Turk J Biochem. 2017 Dec;42(6):609–616. https://doi.org/10.1515/tjb-2017-0087
  16. Brito EMS, Guyoneaud R, Goñi-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MAC, Wasserman JCA, Duran R. Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol. 2006 Oct; 157(8):752–762. https://doi.org/10.1016/j.resmic.2006.03.005
  17. Brzeszcz J, Kaszycki P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: An undervalued strategy for metabolic diversity and flexibility. Biodegradation. 2018 Aug;29(4):359–407. https://doi.org/10.1007/s10532-018-9837-x
  18. Chen Y, Ye W, Zhang Y, Xu Y. High speed BLASTN: An accelerated MegaBLAST search tool. Nucleic Acids Res. 2015 Aug;43(16): 7762–7768. https://doi.org/10.1093/nar/gkv784
  19. Chuah LF, Chew KW, Bokhari A, Mubashir M, Show PL. Biodegradation of crude oil in seawater by using a consortium of symbiotic bacteria. Environ Res. 2022 Oct;213:113721. https://doi.org/10.1016/j.envres.2022.113721
  20. da Silva LJ, Alves FC, de França FP. A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Manage Res. 2012 Oct;30(10):1016–1030. https://doi.org/10.1177/0734242X12448517
  21. Davey JF, Gibson DT. Bacterial metabolism of para- and metaxylene: Oxidation of a methyl substituent. J Bacteriol. 1974 Sep; 119(3):923–929. https://doi.org/10.1128/jb.119.3.923-929.1974
  22. Denome SA, Stanley DC, Olson ES, Young KD. Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol. 1993 Nov;175(21):6890–6901. https://doi.org/10.1128/jb.175.21.6890-6901.1993
  23. Di Canito A, Zampolli J, Orro A, D’Ursi P, Milanesi L, Sello G, Steinbüchel A, Di Gennaro P. Genome-based analysis for the identification of genes involved in o-xylene degradation in Rhodococcus opacus R7. BMC Genomics. 2018 Dec;19(1):587. https://doi.org/10.1186/s12864-018-4965-6
  24. Egland PG, Pelletier DA, Dispensa M, Gibson J, Harwood CS. A cluster of bacterial genes for anaerobic benzene ring biodegradation. Proc Natl Acad Sci USA. 1997 Jun;94(12):6484–6489. https://doi.org/10.1073/pnas.94.12.6484
  25. Ezeonu CS, Tagbo R, Anike EN, Oje OA, Onwurah INE. Biotechnological tools for environmental sustainability: Prospects and challenges for environments in Nigeria – A standard review. Biotechnol Res Int. 2012 May;2012:1–26. https://doi.org/10.1155/2012/450802
  26. Eziuzor SC, Vogt C. Anaerobe isolation from denitrifying benzenedegrading enrichment culture and their capacity to mineralize benzene. bioRxiv 2023;2023.01.07.522375. https://doi.org/10.1101/2023.01.07.522375
  27. Feng S, Gong L, Zhang Y, Tong Y, Zhang H, Zhu D, Huang X, Yang H. Bioaugmentation potential evaluation of a bacterial consortium composed of isolated Pseudomonas and Rhodococcus for degrading benzene, toluene and styrene in sludge and sewage. Bioresour Technol. 2021 Jan;320(Pt A):124329. https://doi.org/10.1016/j.biortech.2020.124329
  28. Ganesh Kumar A, Mathew NC, Sujitha K, Kirubagaran R, Dharani G. Genome analysis of deep sea piezotolerant Nesiotobacter exalbescens COD22 and toluene degradation studies under high pressure condition. Sci Rep. 2019 Dec;9(1):18724. https://doi.org/10.1038/s41598-019-55115-9
  29. Gomes E, da Silva R, de Cassia Pereira J, Ladino-Orjuela G. Chapter 3 – Fungal growth on solid substrates: A physiological overview. In: Pandey A, Larroche C, Soccol CR, editors. Current developments in biotechnology and bioengineering. Amsterdam (The Netherlands): Elsevier B.V.; 2018. p. 31–56. https://doi.org/10.1016/B978-0-444-63990-5.00003-7
  30. Goyal AK, Zylstra GJ. Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni. J Ind Microbiol Biotechnol. 1997 Nov;19(5–6):401–407. https://doi.org/10.1038/sj.jim.2900476
  31. Haider FU, Ejaz M, Cheema SA, Khan MI, Zhao B, Liqun C, Salim MA, Naveed M, Khan N, Núñez-Delgado A, et al. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environ Res. 2021 Jun;197:111031. https://doi.org/10.1016/j.envres.2021.111031
  32. Hao X, Chen Q, van Loosdrecht MCM, Li J, Jiang H. Sustainable disposal of excess sludge: Incineration without anaerobic digestion. Water Res. 2020 Mar;170:115298. https://doi.org/10.1016/j.watres.2019.115298
  33. Heider J, Spormann AM, Beller HR, Widdel F. Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev. 1998 Dec; 22(5):459–473. https://doi.org/10.1111/j.1574-6976.1998.tb00381.x
  34. Hossain MF, Akter MA, Sohan MSR, Sultana DN, Reza MA, Hoque KMF. Bioremediation potential of hydrocarbon degrading bacteria: Isolation, characterization, and assessment. Saudi J Biol Sci. 2022 Jan;29(1):211–216. https://doi.org/10.1016/j.sjbs.2021.08.069
  35. Hu M, Zhang F, Li G, Ruan H, Li X, Zhong L, Chen G, Rui Y. Falsochrobactrum tianjinense sp. nov., a new petroleum-degrading bacteria isolated from oily soils. Int J Environ Res Public Health. 2022 Sep;19(18):11833. https://doi.org/10.3390/ijerph191811833
  36. Jeffries TC, Rayu S, Nielsen UN, Lai K, Ijaz A, Nazaries L, Singh BK. Metagenomic functional potential predicts degradation rates of a model organophosphorus xenobiotic in pesticide contaminated soils. Front Microbiol. 2018 Feb;9:147. https://doi.org/10.3389/fmicb.2018.00147
  37. Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Gowda GAN, Raftery D, Fu Y, Bringel F, et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun. 2013 Dec;4(1):2785. https://doi.org/10.1038/ncomms3785
  38. Koe WS, Lee JW, Chong WC, Pang YL, Sim LC. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ Sci Pollut Res Int. 2020 Jan;27(3):2522–2565. https://doi.org/10.1007/s11356-019-07193-5
  39. Kumar A, Mallick SP, Singh D, Gupta N. Chapter 1 – Advances in bioremediation: Introduction, applications, and limitations. In: Kumar S, Hashmi MZ, editors. Biological approaches to controlling pollutants. Duxford (UK): Woodhead Publishing; 2022. p. 1–14. https://doi.org/10.1016/B978-0-12-824316-9.00003-3
  40. Li X, Zhang F, Guan B, Sun J, Liao G. Review on oily sludge treatment technology. IOP Conf Ser Earth Environ Sci. 2020;467:012173. https://doi.org/10.1088/1755-1315/467/1/012173
  41. Li Y, Cui Z, Luan X, Bian X, Li G, Hao T, Liu J, Feng K, Song Y. Degradation potential and pathways of methylcyclohexane by bacteria derived from Antarctic surface water. Chemosphere. 2023a Jul; 329:138647. https://doi.org/10.1016/j.chemosphere.2023.138647
  42. Li YQ, Xin Y, Li C, Liu J, Huang T. Metagenomics-metabolomics analysis of microbial function and metabolism in petroleum-contaminated soil. Braz J Microbiol. 2023b;54:935–947. https://doi.org/10.1007/s42770-023-01000-7
  43. Liang J, Cheng T, Huang Y, Liu J. Petroleum degradation by Pseudomonas sp. ZS1 is impeded in the presence of antagonist Alcaligenes sp. CT10. AMB Express. 2018 Dec;8(1):88. https://doi.org/10.1186/s13568-018-0620-5
  44. Lim MW, Lau EV, Poh PE. Micro-macrobubbles interactions and its application in flotation technology for the recovery of high density oil from contaminated sands. J Petrol Sci Eng. 2018 Feb;161:29–37. https://doi.org/10.1016/j.petrol.2017.11.064
  45. Lima SD, Oliveira AF, Golin R, Lopes VCP, Caixeta DS, Lima ZM, Morais EB. Isolation and characterization of hydrocarbon-degrading bacteria from gas station leaking-contaminated groundwater in the Southern Amazon, Brazil. Braz J Biol. 2020 Jun;80(2):354–361. https://doi.org/10.1590/1519-6984.208611
  46. Liu JW, Wei KH, Xu SW, Cui J, Ma J, Xiao XL, Xi BD, He XS. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review. Sci Total Environ. 2021a Feb;756:144142. https://doi.org/10.1016/j.scitotenv.2020.144142
  47. Liu Y, Tang H, Lin Z, Xu P. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv. 2015 Nov;33(7):1484–1492. https://doi.org/10.1016/j.biotechadv.2015.06.001
  48. Liu Y, Wu J, Liu Y, Wu X. Biological process of alkane degradation by Gordonia sihwaniensis. ACS Omega. 2021b Jan;7(1):55–63. https://doi.org/10.1021/acsomega.1c01708
  49. MacKintosh RW, Fewson CA. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Purification and preliminary characterization. Biochem J. 1988 Mar; 250(3):743–751. https://doi.org/10.1042/bj2500743
  50. Marchand C, St-Arnaud M, Hogland W, Bell TH, Hijri M. Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. Int Biodeterior Biodegrad. 2017 Jan; 116:48–57. https://doi.org/10.1016/j.ibiod.2016.09.030
  51. Margolin Eren KJ, Elkabets O, Amirav A. A comparison of electron ionization mass spectra obtained at 70 eV, low electron energies, and with cold EI and their NIST library identification probabilities. J Mass Spectrom. 2020 Dec;55(12):e4646. https://doi.org/10.1002/jms.4646
  52. Marr EK, Stone RW. Bacterial oxidation of benzene. J Bacteriol. 1961 Mar;81(3):425–430. https://doi.org/10.1128/jb.81.3.425-430.1961
  53. Mohanty G, Mukherji S. Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia. Int Biodeterior Biodegrad. 2008 Apr;61(3): 240–250. https://doi.org/10.1016/j.ibiod.2007.06.011
  54. Mori R. Replacing all petroleum-based chemical products with natural biomass-based chemical products: A tutorial review. RSC Sustain. 2023;1(2):179–212. https://doi.org/10.1039/D2SU00014H
  55. Mousa AERA. Isolation and characterization of phenol degrading bacteria from wastewater. Int J Biol Phys Chem Stud. 2023;5(2):17–24. https://doi.org/10.32996/ijbpcs.2023.5.2.3
  56. Muccee F, Ejaz S, Riaz N, Iqbal J. Molecular and functional analysis of naphthalene-degrading bacteria isolated from the effluents of indigenous tanneries. J Basic Microbiol. 2021 Jul;61(7):627–641. https://doi.org/10.1002/jobm.202100123
  57. Muccee F, Ejaz S, Riaz N. Toluene degradation via a unique metabolic route in indigenous bacterial species. Arch Microbiol. 2019 Dec; 201(10):1369–1383. https://doi.org/10.1007/s00203-019-01705-0
  58. Muccee F, Ejaz S. An investigation of petrol metabolizing bacteria isolated from contaminated soil samples collected from various fuel stations. Pol J Microbiol. 2019 Jan;68(2):193–201. https://doi.org/10.33073/pjm-2019-019
  59. Newman LM, Wackett LP. Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry. 1995 Oct;34(43):14066–14076. https://doi.org/10.1021/bi00043a012
  60. Olsen RH, Kukor JJ, Kaphammer B. A novel toluene-3-monooxy-genase pathway cloned from Pseudomonas pickettii PKO1. J Bacteriol. 1994 Jun;176(12):3749–3756. https://doi.org/10.1128/jb.176.12.3749-3756.1994
  61. Ossai IC, Ahmed A, Hassan A, Hamid FS. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ Technol Innovation. 2020 Feb;17:100526. https://doi.org/10.1016/j.eti.2019.100526
  62. Petkova M, Shilev S. Revealing fungal diversity in mesophilic and thermophilic habitats of sewage sludge composting by next-generation sequencing. Appl Sci. 2023;13(9):5546. https://doi.org/10.3390/app13095546
  63. Podgorski DC, Corilo YE, Nyadong L, Lobodin VV, Bythell BJ, Robbins WK, McKenna AM, Marshall AG, Rodgers RP. Heavy petroleum composition. 5. Compositional and structural continuum of petroleum revealed. Energy Fuels. 2013 Mar;27(3):1268–1276. https://doi.org/10.1021/ef301737f
  64. Ramírez-Camacho JG, Carbone F, Pastor E, Bubbico R, Casal J. Assessing the consequences of pipeline accidents to support landuse planning. Saf Sci. 2017 Aug;97:34–42. https://doi.org/10.1016/j.ssci.2016.01.021
  65. Reiner AM. Metabolism of benzoic acid by bacteria: 3,5-cyclohexa-diene-1,2-diol-1-carboxylic acid is an intermediate in the formation of catechol. J Bacteriol. 1971 Oct;108(1):89–94. https://doi.org/10.1128/jb.108.1.89-94.1971
  66. Sadiqi S, Hamza M, Ali F, Alam S, Shakeela Q, Ahmed S, Ayaz A, Ali S, Saqib S, Ullah F, et al. Molecular characterization of bacterial isolates from soil samples and evaluation of their antibacterial potential against MDRS. Molecules. 2022 Sep;27(19):6281. https://doi.org/10.3390/molecules27196281
  67. Salari M, Rahmanian V, Hashemi SA, Chiang WH, Lai CW, Mousavi SM, Gholami A. Bioremediation treatment of polyaromatic hydrocarbons for environmental sustainability. Water. 2022 Dec;14(23):3980. https://doi.org/10.3390/w14233980
  68. Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, Leipe D, Mcveigh R, O’Neill K, Robbertse B, et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database. 2020 Jan;2020:baaa062. https://doi.org/10.1093/database/baaa062
  69. Sharma I. Bioremediation techniques for polluted environment: Concept, advantages, limitations, and prospects. In: Alfonso Murillo-Tovar M, Saldarriaga-Noreña H and Saeid A, editors. Trace metals in the environment – new approaches and recent advances. London (UK): IntechOpen; 2020. https://doi.org/10.5772/intechopen.90453
  70. Sievers F, Higgins DG. The Clustal Omega multiple alignment package. In: Katoh K, editor. Multiple sequence alignment. Methods in molecular biology, vol. 2231. New York (USA): Humana; 2021. p. 3–16. https://doi.org/10.1007/978-1-0716-1036-7_1
  71. Sivagami K, Padmanabhan K, Joy AC, Nambi IM. Microwave (MW) remediation of hydrocarbon contaminated soil using spent graphite – An approach for waste as a resource. J Environ Manage. 2019 Jan;230:151–158. https://doi.org/10.1016/j.jenvman.2018.08.071
  72. Speight JG, Arjoon KK. Bioremediation of petroleum and petroleum products. Hoboken (USA): John Wiley & Sons, Ltd.; 2012. https://doi.org/10.1002/9781118528471
  73. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol. 2021 Jun;38(7): 3022–3027. https://doi.org/10.1093/molbev/msab120
  74. Tian X, Wang X, Peng S, Wang Z, Zhou R, Tian H. Isolation, screening, and crude oil degradation characteristics of hydrocarbons-degrading bacteria for treatment of oily wastewater. Water Sci Technol. 2018 Dec;78(12):2626–2638. https://doi.org/10.2166/wst.2019.025
  75. Tran HT, Lin C, Hoang HG, Bui XT, Le VG, Vu CT. Soil washing for the remediation of dioxin-contaminated soil: A review. J Hazard Mater. 2022 Jan;421:126767. https://doi.org/10.1016/j.jhazmat.2021.126767
  76. Viesser JA, Sugai-Guerios MH, Malucelli LC, Pincerati MR, Karp SG, Maranho LT. Petroleum-tolerant rhizospheric bacteria: Isolation, characterization and bioremediation potential. Sci Rep. 2020 Feb;10(1):2060. https://doi.org/10.1038/s41598-020-59029-9
  77. Wang M, Ding M, Yuan Y. Bioengineering for the microbial degradation of petroleum hydrocarbon contaminants. Bioengineering. 2023 Mar;10(3):347. https://doi.org/10.3390/bioengineering10030347
  78. Whited GM, Gibson DT. Separation and partial characterization of the enzymes of the toluene-4-monooxygenase catabolic pathway in Pseudomonas mendocina KR1. J Bacteriol. 1991 May;173(9): 3017–3020. https://doi.org/10.1128/jb.173.9.3017-3020.1991
  79. Wright MH, Adelskov J, Greene AC. Bacterial DNA extraction using individual enzymes and phenol/chloroform separation. J Microbiol Biol Educ. 2017 Sep;18(2):18.2.48. https://doi.org/10.1128/jmbe.v18i2.1348
  80. Wulandari M, Effendi AJ. Effect of frequency and ratio solid liquid on ultrasonic remediation of petroleum contaminated soil. AIP Conf Proc. 2018 Sep;2014(1):020120-1–020120-7. https://doi.org/10.1063/1.5054524
  81. Xu J, Zhang Q, Li D, Du J, Wang C, Qin J. Rapid degradation of long-chain crude oil in soil by indigenous bacteria using fermented food waste supernatant. Waste Manag. 2019 Feb;85:361–373. https://doi.org/10.1016/j.wasman.2018.12.041
  82. Zehnle H, Otersen C, Benito Merino D, Wegener G. Potential for the anaerobic oxidation of benzene and naphthalene in thermophilic microorganisms from the Guaymas Basin. Front Microbiol. 2023 Sep;14:1279865. https://doi.org/10.3389/fmicb.2023.1279865
  83. Zhang X, Kong D, Liu X, Xie H, Lou X, Zeng C. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere. 2021 Jun; 273: 129666. https://doi.org/10.1016/j.chemosphere.2021.129666
  84. Zhao C, Dong Y, Feng Y, Li Y, Dong Y. Thermal desorption for remediation of contaminated soil: A review. Chemosphere. 2019 Apr; 221:841–855. https://doi.org/10.1016/j.chemosphere.2019.01.079
  85. Zhou L, Li H, Zhang Y, Han S, Xu H. Sphingomonas from petroleum-contaminated soils in Shenfu, China and their PAHs degradation abilities. Braz J Microbiol. 2016 Apr;47(2):271–278. https://doi.org/10.1016/j.bjm.2016.01.001
  86. Zou X, Su Q, Yi Q, Guo L, Chen D, Wang B, Li Y, Li J. Determining the degradation mechanism and application potential of benzopyrene-degrading bacterium Acinetobacter XS-4 by screening. J Hazard Mater. 2023 Aug;456:131666. https://doi.org/10.1016/j.jhazmat.2023.131666
DOI: https://doi.org/10.33073/pjm-2024-012 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 107 - 120
Submitted on: Sep 11, 2023
Accepted on: Feb 12, 2024
Published on: Mar 4, 2024
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Nadia Hussain, Fatima Muccee, Muhammad Hammad, Farhan Mohiuddin, Saboor Muarij Bunny, Aansa Shahab, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.