Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Stoichiometric equations of reactions involved in formation of metabolic intermediates of petroleum hydrocarbons degradation identified in Bacillus cereus strain sab41
| No. of reactions | Stoichiometric equations |
|---|---|
| Methane | |
| 1 | |
| 2 | |
| Methylcycleohexane | |
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| Toluene | |
| 1 (Tbu, TMO, TOM) | |
| 2 (Tbu, TMO) | |
| 3 (TMO) | |
| Benzene | |
| 1 (pathway A) | |
| 2 (pathway B) | |
| 3 | |
| 4 (pathway C) | |
| Xylene | |
| 1 | |
| 2 | |
Earlier reported pathways in petroleum degrading bacteria and the metabolites identified in Bacillus cereus strain sab41_
| Petroleum hydrocarbon component | Pathway/bacterium reported in literature | Metabolites identified in present study | Reference |
|---|---|---|---|
| Methane | Methylomicrobium alcaliphilum 20Z | methylalcohol, methanone, methanoic acid | Kalyuzhnaya et al. 2013 |
| Methylcyclohexane | Pseudophaeobacter, Gilvimarinus, Pseudomonas, Cycloclasticus, Roseovarius | cyclohexane carboxylic acid, benzoic acid, catechol, cis,cis-muconate | Li et al. 2023a |
| Toluene | Thauera sp. strain T1 | benzoate, acetaldehyde, cyclohexene, pyruvate, cresol, 3-methyl catechol, 4-hydroxybenzoate | Heider et al. 1998; Muccee et al. 2019 |
| Toluene 4-monoxygenase pathway in Pseudomonas mendocina KR1 | p-cresol, 4-hydroxybenzoate | Whited and Gibson 1991 | |
| toluene 3-monooxygenase pathway in Pseudomonas pickettii | m-cresol, 3-methylcatechol | Olsen et al. 1994 | |
| Benzene | Acinetobacter calcoaceticus, Rhodopseudomonas palustris, Pseudomonas putida CSV86 | benzoate, catechol, cis,cis-muconic acid, 4-hydroxybenzoate | Mackintosh and Fewson 1988; Egland et al. 1997; Basu et al. 2003 |
| Xylene | m-xylene oxidation in Pseudomonas Pxy | m-tolualdehyde, 3-methylcatechol | Davey and Gibson 1974 |
Petroleum hydrocarbons degrading bacteria reported in the literature_
| Bacteria | References |
|---|---|
| Acinetobacter XS-4 | Zou et al. 2023 |
| Neorhizobium, Allorhizobium, Rhizobium, Pararhizobium, Pseudomonas, Nocardioides, Simplicispira | Eziuzor and Vogt 2023 |
| Dehalococcoidia | Zehnle et al. 2023 |
| Pinisolibacter aquiterrae | Bedics et al. 2022 |
| Enterobacter | Hossain et al. 2022 |
| Talaromyces sp. | Zhang et al. 2021 |
| Pseudomonas pseudoalcaligenes, Rhodococcus | Feng et al. 2021; Chuah et al. 2022 |
| Aquabacterium | Xu et al. 2019 |
| Nesiotobacter exalbescens | Ganesh Kumar et al. 2019 |
| Bradyrhizobium, Koribacter, Acidimicrobium | Jeffries et al. 2018 |
| Sphingomonas | Zhou et al. 2016 |
| Exiguobacterium aurantiacum | Mohanty and Mukherji 2008 |
| Bacillus subtilis, Alcaligenes sp., Flavobacterium sp., Micrococcus roseus, Corynebacterium sp. | Adebusoye et al. 2007 |
| Marinobacter, Alcanivorax, Sphingomonas, Gordonia, Micrococcus, Cellulomonas, Dietzia | Brito et al. 2006 |