References
- Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol. 2015 Feb;5:7. https://www.doi.org/10.3389/fcimb.2015.00007
- Chavan T, Muth A. The diverse bioactivity of α-mangostin and its therapeutic implications. Future Med Chem. 2021 Oct;13(19):1679–1694. https://www.doi.org/10.4155/fmc-2021-0146
- Chen G, Li Y, Wang W, Deng L. Bioactivity and pharmacological properties of α-mangostin from the mangosteen fruit: a review. Expert Opin Ther Pat. 2018 May;28(5):415–427. https://www.doi.org/10.1080/13543776.2018.1455829
- Cho J, Costa SK, Wierzbicki RM, Rigby WFC, Cheung AL. The extracellular loop of the membrane permease VraG interacts with GraS to sense cationic antimicrobial peptides in Staphylococcus aureus. PLoS Pathog. 2021 Mar;17(3):e1009338. https://www.doi.org/10.1371/journal.ppat.1009338
- Ciulla M, Di Stefano A, Marinelli L, Cacciatore I, Di Biase G. RNAIII inhibiting peptide (RIP) and derivatives as potential tools for the treatment of S. aureus biofilm infections. Curr Top Med Chem. 2018;18(24):2068–2079. https://www.doi.org/10.2174/1568026618666181022120711
- CLSI. Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Wayne (USA): Clinical and Laboratory Standards Institute; 2020.
- Cyphert EL, von Recum HA. Emerging technologies for long-term antimicrobial device coatings: advantages and limitations. Exp Biol Med (Maywood). 2017 Apr;242(8):788–798. https://www.doi.org/10.1177/1535370216688572
- Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001 Mar–Apr;7(2):277–281. https://www.doi.org/10.3201/eid0702.010226
- Falord M, Karimova G, Hiron A, Msadek T. GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2012 Feb;56(2):1047–1058. https://www.doi.org/10.1128/AAC.05054-11
- Fan Q, Yan C, Shi C, Xu Y, Ma Y, Zhang C, Peng X, Xia X. Inhibitory effect of coenzyme Q0 on the growth of Staphylococcus aureus. Foodborne Pathog Dis. 2019 May;16(5):317–324. https://www.doi.org/10.1089/fpd.2018.2559
- Felix L, Mishra B, Khader R, Ganesan N, Mylonakis E. In vitro and in vivo bactericidal and antibiofilm efficacy of alpha mangostin against Staphylococcus aureus persister cells. Front Cell Infect Microbiol. 2022 Jul;12:898794. https://www.doi.org/10.3389/fcimb.2022.898794
- Ghoreishi FS, Roghanian R, Emtiazi G. Novel chronic wound healing by anti-biofilm peptides and protease. Adv Pharm Bull. 2022 May; 12(3):424–436. https://www.doi.org/10.34172/apb.2022.047
- Gibbons S. Phytochemicals for bacterial resistance – strengths, weaknesses and opportunities. Planta Med. 2008 May;74(6):594–602. https://www.doi.org/10.1055/s-2008-1074518
- Gründling A, Schneewind O. Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J Bacteriol. 2007 Mar;189(6):2521–2530. https://www.doi.org/10.1128/JB.01683-06
- Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017 May;41(3):276–301. https://www.doi.org/10.1093/femsre/fux010
- Hesser AR, Matano LM, Vickery CR, Wood BM, Santiago AG, Morris HG, Do T, Losick R, Walker S. The length of lipoteichoic acid polymers controls Staphylococcus aureus cell size and envelope integrity. J Bacteriol. 2020 Jun;202(16):e00149–20. https://www.doi.org/10.1128/JB.00149-20
- Iinuma M, Tosa H, Tanaka T, Asai F, Kobayashi Y, Shimano R, Miyauchi K. Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant Staphylococcus aureus. J Pharm Pharmacol. 1996 Aug;48(8):861–865. https://www.doi.org/10.1111/j.2042-7158.1996.tb03988.x
- Kali A. Antibiotics and bioactive natural products in treatment of methicillin resistant Staphylococcus aureus: A brief review. Pharmacogn Rev. 2015 Jan–Jun;9(17):29–34. https://www.doi.org/10.4103/0973-7847.156329
- Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, Napolitano LM, O’Grady NP, Bartlett JG, Carratalà J, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016 Sep;63(5):e61–e111. https://www.doi.org/10.1093/cid/ciw353
- Koh JJ, Qiu S, Zou H, Lakshminarayanan R, Li J, Zhou X, Tang C, Saraswathi P, Verma C, Tan DT, et al. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim Biophys Acta. 2013 Feb;1828(2):834–844. https://www.doi.org/10.1016/j.bbamem.2012.09.004
- Lin S, Zhu C, Li H, Chen Y, Liu S. Potent in vitro and in vivo antimicrobial activity of semisynthetic amphiphilic γ-mangostin derivative LS02 against Gram-positive bacteria with destructive effect on bacterial membrane. Biochim Biophys Acta Biomembr. 2020 Sep;1862(9):183353. https://www.doi.org/10.1016/j.bbamem.2020.183353
- Ma J, Chen T, Wu S, Yang C, Bai M, Shu K, Li K, Zhang G, Jin Z, He F, Hermjakob H, Zhu Y. iProX: An integrated proteome resource. Nucleic Acids Res. 2019 Jan;47(D1):D1211–D1217. https://www.doi.org/10.1093/nar/gky869
- Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001 Jan;9(1):34–39. https://www.doi.org/10.1016/s0966-842x(00)01913-2
- Manna AC, Cheung AL. sarU, a sarA homolog, is repressed by SarT and regulates virulence genes in Staphylococcus aureus. Infect Immun. 2003 Jan;71(1):343–53. https://www.doi.org/10.1128/IAI.71.1.343-353.2003
- Meah MS, Lertcanawanichakul M, Pedpradab P, Lin W, Zhu K, Li G, Panichayupakaranant P. Synergistic effect on anti-methicillin-resistant Staphylococcus aureus among combinations of α-mangostin-rich extract, lawsone methyl ether and ampicillin. Lett Appl Microbiol. 2020 Nov;71(5):510–519. https://www.doi.org/10.1111/lam.13369
- Nguyen PTM, Nguyen MTH, Bolhuis A. Inhibition of biofilm formation by alpha-mangostin loaded nanoparticles against Staphylococcus aureus. Saudi J Biol Sci. 2021 Mar;28(3):1615–1621. https://www.doi.org/10.1016/j.sjbs.2020.11.061
- Otto M. Staphylococcal Biofilms. Microbiol Spectr. 2018 Aug;6(4): 6.4.27. https://www.doi.org/10.1128/microbiolspec.GPP3-0023-2018
- Phuong NTM, Van Quang N, Mai TT, Anh NV, Kuhakarn C, Reutrakul V, Bolhuis A. Antibiofilm activity of α-mangostin extracted from Garcinia mangostana L. against Staphylococcus aureus. Asian Pac J Trop Med. 2017 Dec;10(12):1154–1160. https://www.doi.org/10.1016/j.apjtm.2017.10.022
- Roy S, Santra S, Das A, Dixith S, Sinha M, Ghatak S, Ghosh N, Banerjee P, Khanna S, Mathew-Steiner S, et al. Staphylococcus aureus biofilm infection compromises wound healing by causing deficiencies in granulation tissue collagen. Ann Surg. 2020 Jun; 271(6): 1174–1185. https://www.doi.org/10.1097/SLA.0000000000003053
- Schilcher K, Horswill AR. Staphylococcal biofilm development: Structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. 2020 Aug;84(3):e00026-19. https://www.doi.org/10.1128/MMBR.00026-19
- Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2013-2015 [Internet]. Seattle (USA): Institute for Systems Biology; 2013. Available at: http://www.repeatmasker.org
- Song M, Liu Y, Huang X, Ding S, Wang Y, Shen J, Zhu K. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens. Nat Microbiol. 2020 Aug;5(8):1040–1050. https://www.doi.org/10.1038/s41564-020-0723-z
- Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 2008 Mar;6(3):199–210. https://www.doi.org/10.1038/nrmicro1838
- Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev. 2014 Apr;27(2):302–345. https://www.doi.org/10.1128/CMR.00111-13
- Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015 Jul;28(3):603–661. https://www.doi.org/10.1128/CMR.00134-14
- Wang H, Shi Y, Chen J, Wang Y, Wang Z, Yu Z, Zheng J, Shang Y. The antiviral drug efavirenz reduces biofilm formation and hemolysis by Staphylococcus aureus. J Med Microbiol. 2021 Oct;70(10). https://www.doi.org/10.1099/jmm.0.001433
- Wen Z, Zhao Y, Gong Z, Tang Y, Xiong Y, Chen J, Chen C, Zhang Y, Liu S, Zheng J, et al. The mechanism of action of ginkgolic acid (15:1) against Gram-positive bacteria involves cross talk with iron homeostasis. Microbiol Spectr. 2022 Feb;10(1):e0099121. https://www.doi.org/10.1128/spectrum.00991-21
- Yang SJ, Bayer AS, Mishra NN, Meehl M, Ledala N, Yeaman MR, Xiong YQ, Cheung AL. The Staphylococcus aureus two-component regulatory system, GraRS, senses and confers resistance to selected cationic antimicrobial peptides. Infect Immun. 2012 Jan;80(1):74–81. https://www.doi.org/10.1128/IAI.05669-11
- Zheng J, Shang Y, Wu Y, Wu J, Chen J, Wang Z, Sun X, Xu G, Deng Q, Qu D, et al. Diclazuril inhibits biofilm formation and hemolysis of Staphylococcus aureus. ACS Infect Dis. 2021 Jun;7(6):1690–1701. https://www.doi.org/10.1021/acsinfecdis.1c00030
- Zheng JX, Sun X, Lin ZW, Qi GB, Tu HP, Wu Y, Jiang SB, Chen Z, Deng QW, Qu D, et al. In vitro activities of daptomycin combined with fosfomycin or rifampin on planktonic and adherent linezolid-resistant isolates of Enterococcus faecalis. J Med Microbiol. 2019 Mar;68(3):493–502. https://www.doi.org/10.1099/jmm.0.000945
- Zheng JX, Tu HP, Sun X, Xu GJ, Chen JW, Deng QW, Yu ZJ, Qu D. In vitro activities of telithromycin against Staphylococcus aureus biofilms compared with azithromycin, clindamycin, vancomycin and daptomycin. J Med Microbiol. 2020 Jan;69(1):120–131. https://www.doi.org/10.1099/jmm.0.001122