Have a personal or library account? Click to login
Whole Genome Sequence Analysis of Lactiplantibacillus plantarum Bacteriophage P2 Cover

Whole Genome Sequence Analysis of Lactiplantibacillus plantarum Bacteriophage P2

Open Access
|Sep 2022

References

  1. Binetti AG, Quiberoni A, Reinheimer JA. Phage adsorption to Streptococcus thermophilus. Influence of environmental factors and characterization of cell-receptors. Food Res Int. 2002;35(1):73–83. https://doi.org/10.1016/S0963-9969(01)00121-1
  2. Briggiler Marcó M, Garneau JE, Tremblay D, Quiberoni A, Moineau S. Characterization of two virulent phages of Lactobacillus plantarum. Appl Enviro Microbiol. 2012;78(24):8719. https://doi.org/10.1128/aem.02565-12
  3. Bzikadze AV, Pevzner PA. Automated assembly of centromeres from ultra-long error-prone reads. Nat Biotechnol. 2020;38(11):1309–1316. https://doi.org/10.1038/s41587-020-0582-4
  4. Cao Y, Li S, Wang D, Zhao J, Xu L, Liu H, Lu T, Mou Z. Genomic characterization of a novel virulent phage infecting the Aeromonas hydrophila isolated from rainbow trout (Oncorhynchus mykiss). Virus Res. 2019;273:197764. https://doi.org/10.1016/j.virusres.2019.197764
  5. Capra ML, Quiberoni ADL, Ackermann HW, Moineau S, Reinheimer JA. Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei. J Dairy Sci. 2006;89(7):2414–2423. https://doi.org/10.3168/jds.S0022-0302(06)72314-1
  6. Chen X, Guo J, Liu Y, Chai S, Ma R, Munguntsetseg B. Characterization and adsorption of a Lactobacillus plantarum virulent phage. J Dairy Sci. 2019;102(5):3879–3886. https://doi.org/10.3168/jds.2018-16019
  7. Deng Z, Xia X, Deng Y, Zhao M, Gu C, Geng Y, Wang J, Yang Q, He M, Xiao Q, et al. ANI analysis of poxvirus genomes reveals its potential application to viral species rank demarcation. Virus Evol. 2022; 8(1):veac031. https://doi.org/10.1093/ve/veac031
  8. Gherlan GS. Occult hepatitis B – The result of the host immune response interaction with different genomic expressions of the virus. World J Clin Cases. 2022;10(17):5518–5530. https://doi.org/10.12998/wjcc.v10.i17.5518
  9. Grose JH, Jensen GL, Burnett SH, Breakwell DP. Genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity. BMC Genomics. 2014;15(1):855. https://doi.org/10.1186/1471-2164-15-855
  10. Jamal M, Bukhari SMAUS, Andleeb S, Ali M, Raza S, Nawaz MA, Hussain T, Rahman SU, Shah SSA. Bacteriophages: An overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol. 2019;59(2):123–133. https://doi.org/10.1002/jobm.201800412
  11. Jaomanjaka F, Claisse O, Blanche-Barbat M, Petrel M, Ballestra P, Marrec LC. Characterization of a new virulent phage infecting the lactic acid bacterium Oenococcus oeni. Food Microbiol. 2016; 54:167–177. https://doi.org/10.1016/j.fm.2015.09.016
  12. Khalil R, Frank JF, Hassan AN, Omar SH. Inhibition of phage infection in capsule producing Streptococcus thermophilus using concanavalin A, lysozyme and saccharides. Afr J Biotechnol. 2007; 6(19): 2280–2286. https://doi.org/10.5897/ajb2007.000-2357
  13. Kolmogorov M, Yuan J, Lin Y, Pevzner P. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540-546. https://doi.org/10.1038/s41587-019-0072-8
  14. Korniienko N, Kharina A, Zrelovs N, Jindřichová B, Moravec T, Budzanivska I, Burketová L, Kalachova T. Isolation and characterization of two lytic phages efficient against phytopathogenic bacteria from Pseudomonas and Xanthomonas genera. Front Microbiol. 2022;13:853593. https://doi.org/10.3389/fmicb.2022.853593
  15. Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019;25(2):219–232. https://doi.org/10.1016/j.chom.2019.01.014
  16. Leach DR, Stahl FW. Viability of λ phages carrying a perfect palindrome in the absence of recombination nucleases. Nature. 1983; 305(5933): 448–451. https://doi.org/10.1038/305448a0
  17. Lee JB, Hite RK, Hamdan SM, Xie XS, Richardson CC, van Oijen AM. DNA primase acts as a molecular brake in DNA replication. Nature. 2006;439(7076):621–624. https://doi.org/10.1038/nature04317
  18. Lu H, Yan P, Xiong W, Wang J, Liu X. Genomic characterization of a novel virulent phage infecting Shigella fiexneri and isolated from sewage. Virus Res. 2020;283:197983. https://doi.org/10.1016/j.virusres.2020.197983
  19. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012; 1(1):18. https://doi.org/10.1186/2047-217X-1-18
  20. Ma C, Chen Z, Gong G, Huang L, Li S, Ma A. Starter culture design to overcome phage infection during yogurt fermentation. Food Sci Biotechnol. 2015;24:521–527. https://doi.org/10.1007/s10068-015-0068-1
  21. Mancini A, Rodriguez MC, Zago M, Cologna N, Goss A, Carafa I, Tuohy K, Merz A, Franciosi E. Massive survey on bacterial-bacteriophages biodiversity and quality of natural whey starter cultures in Trentingrana cheese production. Front Microbiol. 2021;12:678012. https://doi.org/10.3389/fmicb.2021.678012
  22. Mastura A, Stelios V, Kyle C, Phillip K, Francisco DG. Isolation, characterization and evaluation of virulent bacteriophages against Listeria monocytogenes. Food Control. 2017;75:108–115. https://doi.org/10.1016/j.foodcont.2016.12.035
  23. Maxwell KL, Yee AA, Arrowsmith CH, Gold M, Davidson AR. The solution structure of the bacteriophage λ head-tail joining protein, gpFII. J Mol Biol. 2002;318(5):1395–1404. https://doi.org/10.1016/s0022-2836(02)00276-0
  24. Moodley S, Maxwell KL, Kanelis V. The protein gp74 from the bacteriophage HK97 functions as a HNH endonuclease. Protein Sci. 2012;21(6):809–818. https://doi.org/10.1002/pro.2064
  25. Neviani E, Carminati D, Giraffa G. Selection of some bacteriophage and lysozyme-resistant variants of Lactobacillus helveticus CNRZ 892. J Dairy Sci. 1992;75(4):905–913. https://doi.org/10.3168/jds.S0022-0302(92)77830-8
  26. Ofir G, Sorek R. Contemporary phage biology: From classic models to new insights. Cell. 2018;172(6):1260–1270. https://doi.org/10.1016/j.cell.2017.10.045
  27. Pell LG, Kanelis V, Donaldson LW, Howell PL, Davidson AR. The phage λ major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci USA. 2009;106(11):4160–4165. https://doi.org/10.1073/pnas.0900044106
  28. Quiberoni A, Guglielmotti D, Binetti A, Reinheimer J. Characterization of three Lactobacillus delbrueckii subsp. bulgaricus phages and the physicochemical analysis of phage adsorption. J Appl Microbiol. 2004;96(2):340–351. https://doi.org/10.1046/j.1365-2672.2003.02147.x
  29. Quiberoni A, Reinheimer JA. Physicochemical characterization of phage adsorption to Lactobacillus helveticus ATCC 15807 cells. J Appl Microbiol. 1998;85(4):762–768. https://doi.org/10.1111/j.1365-2672.1998.00591.x
  30. Quiberoni A, Stiefel JI, Reinheimer JA. Characterization of phage receptors in Streptococcus thermophilus using purified cell walls obtained by a simple protocol. J Appl Microbiol. 2000; 89(6): 1059–1065. https://doi.org/10.1046/j.1365-2672.2000.01214.x
  31. Salmond GPC, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015;13(12):777–886. https://doi.org/10.1038/nrmicro3564
  32. Tang S, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nelson K, editor. Encyclopedia of metagenomics. New York (USA): Springer; 2013. https://doi.org/10.1007/978-1-4614-6418-1_440-1
  33. Trevors KE, Holley RA, Kempton AG. Isolation and characterization of a Lactobacillus plantarum bacteriophage isolated from a meat starter culture*. J Appl BacterioL. 1983;54(2):281–288. https://doi.org/10.1111/j.1365-2672.1983.tb02618.x
  34. White K, Yu JH, Eraclio G, Bello FD, Nauta A, Mahony J, van Douwe S. Bacteriophage-host interactions as a platform to establish the role of phages in modulating the microbial composition of fermented foods. Microbiome Res Rep. 2022;1:3. https://doi.org/10.20517/mrr.2021.04
  35. Yasin T, Mustafa A. A protein which masks galactose receptor mediated phage susceptibility in Lactococcus lactis subsp. lactis MPL56. Int J Food Sci Technol. 2002;37(2):139–144. https://doi.org/10.1046/j.1365-2621.2002.00550.x
  36. Yoichi M, Abe M, Miyanaga K, Unno H, Tanji Y. Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. J Biotechnol. 2005;115(1):101–107. https://doi.org/10.1016/j.jbiotec.2004.08.003
  37. Zago M, Lanza B, Rossetti L, Muzzalupo I, Carminati D, Giraffa G. Selection of Lactobacillus plantarum strains to use as starters in fermented table olives: Oleuropeinase activity and phage sensitivity. Food Microbiol. 2013;34(1):81–87. https://doi.org/10.1016/j.fm.2012.11.005
DOI: https://doi.org/10.33073/pjm-2022-037 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 421 - 428
Submitted on: May 25, 2022
Accepted on: Jul 22, 2022
Published on: Sep 24, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Hanfang Zhu, She Guo, Jie Zhao, Hafiz Arbab Sakandar, Ruirui Lv, Qiannan Wen, Xia Chen, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.