Have a personal or library account? Click to login
Expression Level of the mip, pmp18D, and ompA Genes in Chlamydia abortus Isolated from Aborted Ewes Cover

Expression Level of the mip, pmp18D, and ompA Genes in Chlamydia abortus Isolated from Aborted Ewes

Open Access
|Mar 2022

References

  1. <bold>Arif ED, Saeed NM, Rachid SK.</bold> Isolation and identification of <em>Chlamydia abortus</em> from aborted ewes in Sulaimani province, Northern Iraq. Pol J Microbiol. 2020 Mar 25;69(1):65–71. <a href="https://doi.org/10.33073/pjm-2020-009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.33073/pjm-2020-009</a>
  2. <bold>Berri M, Rekiki A, Boumedine K, Rodolakis A.</bold> Simultaneous differential detection of <em>Chlamydophila abortus</em>, <em>Chlamydophila pecorum</em> and <em>Coxiella burnetii</em> from aborted ruminant’s clinical samples using multiplex PCR. BMC Microbiol. 2009;9(1):130. <a href="https://doi.org/10.1186/1471-2180-9-130" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/1471-2180-9-130</a>
  3. <bold>Borel N, Polkinghorne A, Pospischil A.</bold> A review on chlamydial diseases in animals: still a challenge for pathologists? Vet Pathol. 2018 May;55(3):374–390. <a href="https://doi.org/10.1177/0300985817751218" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/0300985817751218</a>
  4. <bold>Braukmann M, Sachse K, Jacobsen ID, Westermann M, Menge C, Saluz HP, Berndt A.</bold> Distinct intensity of host-pathogen interactions in <em>Chlamydia psittaci</em>- and <em>Chlamydia abortus</em>-infected chicken embryos. Infect Immun. 2012 Sep;80(9):2976–2988. <a href="https://doi.org/10.1128/IAI.00437-12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/IAI.00437-12</a>
  5. <bold>Brunham RC, Rey-Ladino J.</bold> Immunology of <em>Chlamydia</em> infection: implications for a <em>Chlamydia trachomatis</em> vaccine. Nat Rev Immunol. 2005 Feb;5(2):149–161. <a href="https://doi.org/10.1038/nri1551" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nri1551</a>
  6. <bold>Campos-Hernández E, Vázquez-Chagoyán JC, Salem AZM, Saltijeral-Oaxaca JA, Escalante-Ochoa C, López-Heydeck SM, de Oca-Jiménez RM.</bold> Prevalence and molecular identification of <em>Chlamydia abortus</em> in commercial dairy goat farms in a hot region in Mexico. Trop Anim Health Prod. 2014 Aug;46(6):919–924. <a href="https://doi.org/10.1007/s11250-014-0585-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11250-014-0585-6</a>
  7. <bold>Caro MR, Buendía AJ, Del Rio L, Ortega N, Gallego MC, Cuello F, Navarro JA, Sanchez J, Salinas J.</bold> <em>Chlamydophila abortus</em> infection in the mouse: A useful model of the ovine disease. Vet Microbiol. 2009 Mar;135(1–2):103–111. <a href="https://doi.org/10.1016/j.vetmic.2008.09.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.vetmic.2008.09.029</a>
  8. <bold>Chavan AR, Bhullar BAS, Wagner GP.</bold> What was the ancestral function of decidual stromal cells? A model for the evolution of eutherian pregnancy. Placenta. 2016 Apr;40:40–51. <a href="https://doi.org/10.1016/j.placenta.2016.02.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.placenta.2016.02.012</a>
  9. <bold>Chun T, Spitznagel JK, Shou H, Hsia R, Bavoil PM.</bold> The polymorphic membrane protein gene family of the <em>Chlamydiaceae</em>. In: Bavoil PM, Wyrick PB, editors. <em>Chlamydia</em>: genomics and pathogenesis. Wymondham (UK): Horizon Bioscience; 2006. p. 195–218.
  10. <bold>Elwell C, Mirrashidi K, Engel J.</bold> <em>Chlamydia</em> cell biology and pathogenesis. Nat Rev Microbiol. 2016 Jun;14(6):385–400. <a href="https://doi.org/10.1038/nrmicro.2016.30" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nrmicro.2016.30</a>
  11. <bold>Essig A, Longbottom D.</bold> <em>Chlamydia abortus</em>: new aspects of infectious abortion in sheep and potential risk for pregnant women. Curr Clin Microbiol Rep. 2015 Mar;2(1):22–34. <a href="https://doi.org/10.1007/s40588-015-0014-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40588-015-0014-2</a>
  12. <bold>Fields KA, Hackstadt T.</bold> The chlamydial inclusion: escape from the endocytic pathway. Annu Rev Cell Dev Biol. 2002 Nov;18(1):221–245. <a href="https://doi.org/10.1146/annurev.cellbio.18.012502.105845" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1146/annurev.cellbio.18.012502.105845</a>
  13. <bold>Forsbach-Birk V, Foddis C, Simnacher U, Wilkat M, Longbottom D, Walder G, Benesch C, Ganter M, Sachse K, Essig A.</bold> Profiling antibody responses to infections by <em>Chlamydia abortus</em> enables identification of potential virulence factors and candidates for serodiagnosis. PLoS One. 2013 Nov 15;8(11):e80310. <a href="https://doi.org/10.1371/journal.pone.0080310" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0080310</a>
  14. <bold>Hagemann JB, Simnacher U, Longbottom D, Livingstone M, Maile J, Soutschek E, Walder G, Boden K, Sachse K, Essig A.</bold> Analysis of humoral immune responses to surface and virulence-associated <em>Chlamydia abortus</em> proteins in ovine and human abortions by use of a newly developed line immunoassay. J Clin Microbiol. 2016 Jul;54(7):1883–1890. <a href="https://doi.org/10.1128/JCM.00351-16" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/JCM.00351-16</a>
  15. <bold>Hailat N, Khlouf S, Ababneh M, Brown C.</bold> Pathological, immunohistochemical and molecular diagnosis of abortions in small ruminants in Jordan with reference to <em>Chlamydia abortus</em> and <em>Brucella melitensis</em>. Pak Vet J. 2018 Mar 01;38(01):109–112. <a href="https://doi.org/10.29261/pakvetj/2018.022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.29261/pakvetj/2018.022</a>
  16. <bold>Hatch GM, McClarty G.</bold> Cardiolipin remodeling in eukaryotic cells infected with <em>Chlamydia trachomatis</em> is linked to elevated mitochondrial metabolism. Biochem Biophys Res Commun. 1998 Feb; 243(2): 356–360. <a href="https://doi.org/10.1006/bbrc.1998.8101" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1006/bbrc.1998.8101</a>
  17. <bold>Kerr K, Entrican G, McKeever D, Longbottom D.</bold> Immunopathology of <em>Chlamydophila abortus</em> infection in sheep and mice. Res Vet Sci. 2005 Feb;78(1):1–7. <a href="https://doi.org/10.1016/j.rvsc.2004.08.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rvsc.2004.08.004</a>
  18. <bold>Labiran C.</bold> Molecular epidemiology of <em>Chlamydia trachomatis</em>: valuation, implementation and development of high resolution geno-typing [PhD Thesis]. Southampton (UK): University of Southampton, Faculty of Medicine, Division of Clinical and Experimental Science; 2014.
  19. <bold>Li Z, Cao X, Fu B, Chao Y, Cai J, Zhou J.</bold> Identification and characterization of <em>Chlamydia abortus</em> isolates from yaks in Qinghai, China. Biomed Res Int. 2015;2015:658519. <a href="https://doi.org/10.1155/2015/658519" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2015/658519</a>
  20. <bold>Livingstone M, Wheelhouse N, Maley SW, Longbottom D.</bold> Molecular detection of <em>Chlamydophila abortus</em> in post-abortion sheep at oestrus and subsequent lambing. Vet Microbiol. 2009 Mar; 135(1–2):134–141. <a href="https://doi.org/10.1016/j.vetmic.2008.09.033" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.vetmic.2008.09.033</a>
  21. <bold>Longbottom D, Livingstone M, Aitchison KD, Imrie L, Manson E, Wheelhouse N, Inglis NF.</bold> Proteomic characterisation of the <em>Chlamydia abortus</em> outer membrane complex (COMC) using combined rapid monolithic column liquid chromatography and fast MS/MS scanning. PLoS One. 2019 Oct 24;14(10):e0224070. <a href="https://doi.org/10.1371/journal.pone.0224070" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0224070</a>
  22. <bold>Longbottom D, Russell M, Jones GE, Lainson FA, Herring AJ.</bold> Identification of a multigene family coding for the 90 kDa proteins of the ovine abortion subtype of <em>Chlamydia psittaci</em>. FEMS Microbiol Lett. 1996 Sep;142(2–3):277–281. <a href="https://doi.org/10.1111/j.1574-6968.1996.tb08443.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6968.1996.tb08443.x</a>
  23. <bold>McClure EE, Chávez ASO, Shaw DK, Carlyon JA, Ganta RR, Noh SM, Wood DO, Bavoil PM, Brayton KA, Martinez JJ, et al.</bold> Engineering of obligate intracellular bacteria: progress, challenges and paradigms. Nat Rev Microbiol. 2017 Sep;15(9):544–558. <a href="https://doi.org/10.1038/nrmicro.2017.59" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nrmicro.2017.59</a>
  24. <bold>Rockey DD, Scidmore MA, Bannantine JP, Brown WJ.</bold> Proteins in the chlamydial inclusion membrane. Microbes Infect. 2002 Mar; 4(3):333–340. <a href="https://doi.org/10.1016/S1286-4579(02)01546-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1286-4579(02)01546-0</a>
  25. <bold>Rodolakis A, Salinas J, Papp J.</bold> Recent advances on ovine chlamydial abortion. Vet Res. 1998 May–Aug;29(3–4):275–288.
  26. <bold>Saeed NM, Talib SM, Dyary HO.</bold> Molecular detection of outer membrane protein 2 gene in isolated brucella from sheep and goats in Sharazor/Kurdistan region of Iraq. Pak Vet J. 2019 Jul 01;39(03): 383–388. <a href="https://doi.org/10.29261/pakvetj/2019.043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.29261/pakvetj/2019.043</a>
  27. <bold>Schoell AR, Heyde BR, Weir DE, Chiang PC, Hu Y, Tung DK.</bold> Euthanasia method for mice in rapid time-course pulmonary pharmacokinetic studies. J Am Assoc Lab Anim Sci. 2009 Sep;48(5): 506–511.
  28. <bold>Singh R, Liechti G, Slade JA, Maurelli AT.</bold> <em>Chlamydia trachomatis</em> oligopeptide transporter performs dual functions of oligopeptide transport and peptidoglycan recycling. Infect Immun. 2020 Apr 20; 88(5):e00086–e20. <a href="https://doi.org/10.1128/IAI.00086-20" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/IAI.00086-20</a>
  29. <bold>Spičic S, Račić Ivana, Andrijanić M, Duvnjak S, Zdelar-Tuk M, Stepanić M, Cvetnić Z.</bold> Emerging cases of chlamydial abortion in sheep and goats in Croatia and Bosnia and Herzegovina. Berl Munch Tierarztl Wochenschr. 2015 May–Jun;128(5–6):183–187.
  30. <bold>Stephens RS, Lammel CJ.</bold> <em>Chlamydia</em> outer membrane protein discovery using genomics. Curr Opin Microbiol. 2001 Feb;4(1):16–20. <a href="https://doi.org/10.1016/S1369-5274(00)00158-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1369-5274(00)00158-2</a>
  31. <bold>Valdivia RH.</bold> <em>Chlamydia</em> effector proteins and new insights into chlamydial cellular microbiology. Curr Opin Microbiol. 2008 Feb; 11(1):53–59. <a href="https://doi.org/10.1016/j.mib.2008.01.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.mib.2008.01.003</a>
  32. <bold>Wheelhouse N, Aitchison K, Spalding L, Livingstone M, Longbottom D.</bold> Transcriptional analysis of <em>in vitro</em> expression patterns of <em>Chlamydophila abortus</em> polymorphic outer membrane proteins during the chlamydial developmental cycle. Vet Res. 2009 Sep;40(5):47. <a href="https://doi.org/10.1051/vetres/2009030" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1051/vetres/2009030</a>
  33. <bold>Zhang Q, Huang Y, Gong S, Yang Z, Sun X, Schenken R, Zhong G.</bold> <em>In vivo</em> and <em>ex vivo</em> imaging reveals a long-lasting chlamydial infection in the mouse gastrointestinal tract following genital tract inoculation. Infect Immun. 2015 Sep;83(9):3568–3577. <a href="https://doi.org/10.1128/IAI.00673-15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/IAI.00673-15</a>
DOI: https://doi.org/10.33073/pjm-2022-014 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 115 - 121
Submitted on: Nov 4, 2021
Accepted on: Feb 20, 2022
Published on: Mar 30, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Eman Dhahir Arif, Nahla Mohammad Saeed, Shwan Kamal Rachid, Hiewa Othman Dyary, Peshnyar M.A. Rashid, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.