Have a personal or library account? Click to login
Evaluation of the Probiotic Potential of Lactobacillus delbrueckii ssp. indicus WDS-7 Isolated from Chinese Traditional Fermented Buffalo Milk In Vitro Cover

Evaluation of the Probiotic Potential of Lactobacillus delbrueckii ssp. indicus WDS-7 Isolated from Chinese Traditional Fermented Buffalo Milk In Vitro

Open Access
|Mar 2022

References

  1. <bold>Abouloifa H, Rokni Y, Bellaouchi R, Ghabbour N, Karboune S, Brasca M, Salah RB, Chihib NE, Saalaoui E, Asehraou A.</bold> Characterization of probiotic properties of antifungal <em>Lactobacillus</em> strains isolated from traditional fermenting green olives. Probiotics Antimicrob Proteins. 2020 Jun;12(2):683–696. <a href="https://doi.org/10.1007/s12602-019-09543-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12602-019-09543-8</a>
  2. <bold>Adesulu-Dahunsi AT, Sanni AI, Jeyaram K.</bold> Production, characterization and <em>in vitro</em> antioxidant activities of exopolysaccharide from <em>Weissella cibaria</em> GA44. LWT-Food Sci Technol. 2018 Jan;87:432–442. <a href="https://doi.org/10.1016/j.lwt.2017.09.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.lwt.2017.09.013</a>
  3. <bold>Bacon RT, Ransom JR, Sofos JN, Kendall PA, Belk KE, Smith GC.</bold> Thermal inactivation of susceptible and multiantimicrobial-resistant <em>Salmonella</em> strains grown in the absence or presence of glucose. Appl Environ Microbiol. 2003 Jul;69(7):4123–4128. <a href="https://doi.org/10.1128/AEM.69.7.4123-4128.2003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AEM.69.7.4123-4128.2003</a>
  4. <bold>Bajaj BK, Andrabi T, Claes IJJ, Lebeer S.</bold> Bioprospecting for functionally-proficient potential probiotics. Curr Nutr Food Sci. 2014 Dec 12;10(4):251–263. <a href="https://doi.org/10.2174/1573401311666141215212331" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2174/1573401311666141215212331</a>
  5. <bold>Bao QH, Liu WJ, Yu J, Wang WH, Qing MJ, Chen X, Wang F, Zhang JC, Zhang WY, Qiao JM, et al.</bold> Isolation and identification of cultivable lactic acid bacteria in traditional yak milk products of Gansu Province in China. J Gen Appl Microbiol. 2012 Nov 5; 58(2): 95–105. <a href="https://doi.org/10.2323/jgam.58.95" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2323/jgam.58.95</a>
  6. <bold>Bao Y, Zhang YC, Zhang Y, Liu Y, Wang SQ, Dong XM, Wang YY, Zhang HP.</bold> Screening of potential probiotic properties of <em>Lactobacillus fermentum</em> isolated from traditional dairy products. Food Control. 2010 May;21(5):695–701. <a href="https://doi.org/10.1016/j.foodcont.2009.10.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.foodcont.2009.10.010</a>
  7. <bold>Bermúdez-Humarán LG, Langella P.</bold> Importance of commensal and probiotic bacteria in human health. Curr Immunol Rev. 2011 May 20;8(3):248–253. <a href="https://doi.org/10.2174/157339512800671994" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2174/157339512800671994</a>
  8. <bold>Bover-Cid S, Holzapfel WH.</bold> Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol. 1999 Dec 1;53(1):33–41. <a href="https://doi.org/10.1016/S0168-1605(99)00152-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0168-1605(99)00152-X</a>
  9. <bold>Cani PD, Van Hul M.</bold> Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr Opin Biotech. 2015 Apr; 32:21–27. <a href="https://doi.org/10.1016/j.copbio.2014.10.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.copbio.2014.10.006</a>
  10. <bold>Cao ZH, Pan HB, Li SJ, Shi CY, Wang SF, Wang FY, Ye PF, Jia JJ, Ge CR, Lin QY, et al.</bold> <em>In vitro</em> evaluation of probiotic potential of lactic acid bacteria isolated from Yunnan De’ang pickled tea. Probiotics Antimicro. 2018 Feb 14;11(5):103–112. <a href="https://doi.org/10.1007/s12602-018-9395-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12602-018-9395-x</a>
  11. <bold>Casarotti SN, Carneiro BM, Todorov SD, Nero LA, Rahal P, Penna ALB.</bold> <em>In vitro</em> assessment of safety and probiotic potential characteristics of <em>Lactobacillus</em> strains isolated from water buffalo mozzarella cheese. Ann Microbiol. 2017 Feb 28;67(4):289–301. <a href="https://doi.org/10.1007/s13213-017-1258-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13213-017-1258-2</a>
  12. <bold>Chapot-Chartier MP, Kulakauskas S.</bold> Cell wall structure and function in lactic acid bacteria. Microb Cell Fact. 2014 Aug 29;13 (Suppl 1):S9. <a href="https://doi.org/10.1186/1475-2859-13-S1-S9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/1475-2859-13-S1-S9</a>
  13. <bold>Chapot-Chartier MP.</bold> Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages. Front Microbiol. 2014 May 22;5:236. <a href="https://doi.org/10.3389/fmicb.2014.00236" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2014.00236</a>
  14. <bold>CLSI.</bold> Performance standards for antimicrobial susceptibility testing; 22<sup>nd</sup> ed. CLSI supplement M100-S22. Wayne (USA): Clinical and Laboratory Standards Institute; 2012. p. 44–49.
  15. <bold>Colombo M, Nero LA, Todorov SD.</bold> Safety profiles of beneficial lactic acid bacteria isolated from dairy systems. Braz J Microbiol. 2020 Jun;51(2):787–795. <a href="https://doi.org/10.1007/s42770-020-00227-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s42770-020-00227-y</a>
  16. <bold>Das P, Khowala S, Biswas S.</bold> <em>In vitro</em> probiotic characterization of <em>Lactobacillus casei</em> isolated from marine samples. LWT-Food Sci Technol. 2016 Nov;73:383–390. <a href="https://doi.org/10.1016/j.lwt.2016.06.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.lwt.2016.06.029</a>
  17. <bold>Das S, Mishra BK, Hati S.</bold> Techno-functional characterization of indigenous <em>Lactobacillus</em> isolates from the traditional fermented foods of Meghalaya, India. Curr Res Food Sci. 2020 Nov;3:9–18. <a href="https://doi.org/10.1016/j.crfs.2020.01.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.crfs.2020.01.002</a>
  18. <bold>Diosma G, Romanin DE, Rey-Burusco MF, Londero A, Garrote GL.</bold> Yeasts from kefir grains: isolation, identification, and probiotic characterization. World J Microb Biot. 2014 Jan;30(1):43–53. <a href="https://doi.org/10.1007/s11274-013-1419-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11274-013-1419-9</a>
  19. <bold>Edalati E, Saneei B, Alizadeh M, Hosseini SS, Zahedi Bialvaei A, Taheri K.</bold> Isolation of probiotic bacteria from raw camel’s milk and their antagonistic effects on two bacteria causing food poisoning. New Microbe New Infect. 2019 Jan;27:64–68. <a href="https://doi.org/10.1016/j.nmni.2018.11.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.nmni.2018.11.008</a>
  20. <bold>Elhadidy M, Zahran E.</bold> Biofilm mediates <em>Enterococcus faecalis</em> adhesion, invasion and survival into bovine mammary epithelial cells. Lett Appl Microbiol. 2014 Mar;58(3):248–254. <a href="https://doi.org/10.1111/lam.12184" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/lam.12184</a>
  21. <bold>El-Jeni R, El-Bour M, Calo-Mata P, Böhme K, Fernández-No IC, Barros-Velázquez J, Bouhaouala-Zahar B.</bold> <em>In vitro</em> probiotic profiling of novel <em>Enterococcus faecium</em> and <em>Leuconostoc mesenteroides</em> from Tunisian freshwater fishes. Can J Microbiol. 2016 Jan;62(1):60–71. <a href="https://doi.org/10.1139/cjm-2015-0481" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1139/cjm-2015-0481</a>
  22. <bold>Faghfoori Z, Gargaria BP, Saber A, Seyyedi M, Khosroushahi AY.</bold> The investigation of the diversity of <em>Lactobacilli</em> spp. and assessment their some probiotic properties in traditional dairy products in East Azerbaijan province in Iran. Iran J Pharm Res. 2017;16(4):1538–1545. <a href="https://doi.org/10.22037/IJPR.2017.2115" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.22037/IJPR.2017.2115</a>
  23. <bold>FAO/WHO</bold>. Guidelines for the evaluation of probiotics in food. London (Canada): Food and Agriculture Organization of the United Nations/World Health Organization; 2002. Available from <a href="www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf</a>
  24. <bold>Funck GD, De Lima Marques J, dos Santos Cruxen CE, Sehn CP, Louise Haubert L, da Silva Dannenberg G, Klajn VM, da Silva WP, Fiorentini AM.</bold> Probiotic potential of <em>Lactobacillus curvatus</em> P99 and viability in fermented oat dairy beverage. J Food Process Pres. 2019 Nov 13;43(12):e14286. <a href="https://doi.org/10.1111/jfpp.14286" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/jfpp.14286</a>
  25. <bold>Georgalaki M, Zoumpopoulou G, Mavrogonatou E, Van Driessche G, Alexandraki V, Anastasiou R, Papadelli M, Kazou M, Manolopoulou E, Kletsas D, et al.</bold> Evaluation of the antihypertensive angiotensin-converting enzyme inhibitory (ACE-I) activity and other probiotic properties of lactic acid bacteria isolated from traditional Greek dairy products. Int Dairy J. 2017 Dec;75:10–21. <a href="http://dx.doi.org/10.1016/j.idairyj.2017.07.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">http://dx.doi.org/10.1016/j.idairyj.2017.07.003</a>
  26. <bold>Gheziel C, Russo P, Arena MP, Spano G, Ouzari HI, Kheroua O, Saidi D, Fiocco D, Kaddouri H, Capozzi V.</bold> Evaluating the probiotic potential of <em>Lactobacillus plantarum</em> strains from Algerian infant feces: towards the design of probiotic starter cultures tailored for developing countries. Probiotics Antimicrob Proteins. 2019 Mar; 11(1):113–123. <a href="https://doi.org/10.1007/s12602-018-9396-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12602-018-9396-9</a>
  27. <bold>Guerrieri E, Niederhäusern SD, Messi P, Sabia C, Iseppi R, Anacarso I, Bondi M.</bold> Use of lactic acid bacteria (LAB) biofilms for the control of <em>Listeria monocytogenes</em> in a small-scale model. Food Control. 2009 Sep;20(9):861–865. <a href="https://doi.org/10.1016/j.foodcont.2008.11.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.foodcont.2008.11.001</a>
  28. <bold>Gupta M, Bajaj BK.</bold> Selection criteria for probiotics and potential of cereal based food products as novel probiotic-carriers. Curr Nutr Food Sci. 2016 Jun 9;12(3):157–174. <a href="https://doi.org/10.2174/1573401312666160610122205" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2174/1573401312666160610122205</a>
  29. <bold>Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, et al.</bold> The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the termprobiotic. Nat Rev Gastroenterol Hepatol. 2014 Aug;11(8):506–514. <a href="https://doi.org/10.1038/nrgastro.2014.66" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nrgastro.2014.66</a>
  30. <bold>Iraporda C, Rubel IA, Manrique GD, Abraham AG.</bold> Influence of inulin rich carbohydrates from Jerusalem artichoke (<em>Helianthus tuberosus</em> L.) tubers on probiotic properties of <em>Lactobacillus</em> strains. LWT-Food Sci Technol. 2019 Mar;101:738–746. <a href="https://doi.org/10.1016/j.lwt.2018.11.074" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.lwt.2018.11.074</a>
  31. <bold>Jatmiko YD, Howarth GS, Barton MD.</bold> Assessment of probiotic properties of lactic acid bacteria isolated from Indonesian naturally fermented milk. AIP Conf Proc. 2017 Nov 29;1908(1):050008. <a href="https://doi.org/10.1063/1.5012732" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.5012732</a>
  32. <bold>Johansson D, Rasmussen M.</bold> Virulence factors in isolates of <em>Enterococcus faecalis</em> from infective endocarditis and from the normal flora. Microb Pathogenesis. 2013 Feb;55:28–31. <a href="https://doi.org/10.1016/j.micpath.2012.09.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.micpath.2012.09.009</a>
  33. <bold>Kandylis P, Pissaridi K, Bekatorou A, Kanellaki M, Koutinas AA.</bold> Dairy and non-dairy probiotic beverages. Curr Opin Food Sci. 2016 Feb;7:58–63. <a href="https://doi.org/10.1016/j.cofs.2015.11.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cofs.2015.11.012</a>
  34. <bold>Kanmani P, Satish-Kumar R, Yuvaraj N, Paari KA, Pattukumar V, Arul V.</bold> Probiotics and its functionally valuable products – a review. Crit Rev Food Sci. 2013;53(6):641–658. <a href="https://doi.org/10.1080/10408398.2011.553752" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/10408398.2011.553752</a>
  35. <bold>Katsuraya K, Shibuya T, Inazawa K, Nakashima H, Yamamoto N, Uryu T.</bold> Synthesis of sulfated alkyl malto-oligosaccharides with potent inhibitory effects on AIDS virus infection. Macromolecules. 1995 Sep;28(20):6697–6700. <a href="https://doi.org/10.1021/ma00124a001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/ma00124a001</a>
  36. <bold>Kaya Ozdgan D, Akcelik N, Aslim B, Suludere Z, Akcelik M.</bold> Probiotic and antioxidative properties of <em>L. lactis</em> LL27 isolated from milk. Biotechnol Biotec Eq. 2012 Apr;26:2750–2758. <a href="https://doi.org/10.5504/BBEQ.2011.0091" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5504/BBEQ.2011.0091</a>
  37. <bold>Khan I, Kang SC.</bold> Probiotic potential of nutritionally improved <em>Lactobacillus plantarum</em> DGK-17 isolated from kimchi – a traditional Korean fermented food. Food Control. 2016 Feb;60:88–94. <a href="https://doi.org/10.1016/j.foodcont.2015.07.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.foodcont.2015.07.010</a>
  38. <bold>Khan SU.</bold> Probiotics in dairy foods: A review. Nutr Food Sci. 2014 Feb 4;44(1):71–88. <a href="https://doi.org/10.1108/NFS-04-2013-0051" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1108/NFS-04-2013-0051</a>
  39. <bold>Kumar A, Kumar D.</bold> Characterization of <em>Lactobacillus</em> isolated from dairy samples for probiotic properties. Anaerobe. 2015 Jun;33: 117–123. <a href="https://doi.org/10.1016/j.anaerobe.2015.03.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.anaerobe.2015.03.004</a>
  40. <bold>Leahy SC, Higgins DG, Fitzgerald GF, Van Sinderen D.</bold> Getting better with bifidobacteria. J Appl Microbiol. 2005;98(6):1303–1315. <a href="https://doi.org/10.1111/j.1365-2672.2005.02600.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1365-2672.2005.02600.x</a>
  41. <bold>Lee NK, Han KJ, Son SH, Eon SJ, Lee SK, Paik HD.</bold> Multifunctional effect of probiotic <em>Lactococcus lactis</em> KC24 isolated from kimchi. LWT-Food Sci Technol. 2015 Dec;64(2):1036–1041. <a href="https://doi.org/10.1016/j.lwt.2015.07.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.lwt.2015.07.019</a>
  42. <bold>Mackenzie DA, Jeffers F, Parker ML, Vibert-Vallet A, Bongaerts RJ, Roos S, Walter J, Juge N.</bold> Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of <em>Lactobacillus reuteri</em>. Microbiology. 2010 Nov 1;156(11):3368–3378. <a href="https://doi.org/10.1099/mic.0.043265-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1099/mic.0.043265-0</a>
  43. <bold>Mahony J, van Sinderen D.</bold> Current taxonomy of phages infecting lactic acid bacteria. Front Microbiol. 2014 Jan 24;5:7. <a href="https://doi.org/10.3389/fmicb.2014.00007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2014.00007</a>
  44. <bold>Maldonado NC, de Ruiz CS, Otero MC, Sesma F, Nader-Macías ME.</bold> Lactic acid bacteria isolated from young calves – characterization and potential as probiotics. Res Vet Sci. 2012 Apr; 92(2): 342–349. <a href="https://doi.org/10.1016/j.rvsc.2011.03.017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rvsc.2011.03.017</a>
  45. <bold>Menezes AGT, Ramos CL, Cenzi G, Melo DS, Dias DR, Schwan RF.</bold> Probiotic potential, antioxidant activity, and phytase production of indigenous yeasts isolated from indigenous fermented foods. Probiotics Antimicrob Proteins. 2020 Mar;12(1):280–288. <a href="https://doi.org/10.1007/s12602-019-9518-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12602-019-9518-z</a>
  46. <bold>Motahari P, Mirdamadi S, Kianirad M.</bold> Safety evaluation and antimicrobial properties of <em>Lactobacillus pentosus</em> 22C isolated from traditional yogurt. J Food Meas Charact. 2017 Sep;11(3):972–978. <a href="https://doi.org/10.1007/s11694-017-9471-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11694-017-9471-z</a>
  47. <bold>Muruzović MŽ, Mladenović KG, Djilas MD, Stefanović OD, Čomić LR.</bold> <em>In vitro</em> evaluation of antimicrobial potential and ability of biofilm formation of autochthonous <em>Lactobacillus</em> spp. and <em>Lactococcus</em> spp. isolated from traditionally made cheese from South-eastern Serbia. J Food Process Preserv. 2018 Nov;42(11):e13776. <a href="https://doi.org/10.1111/jfpp.13776" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/jfpp.13776</a>
  48. <bold>Nair AS, Dubhashi AV.</bold> <em>In-vitro</em> transit tolerance of probiotic <em>Bacillus</em> species in human gastrointestinal tract. Int J Sci Res. 2016 Jun; 5(6):1899–1902. <a href="https://doi.org/10.21275/v5i6.NOV164343" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21275/v5i6.NOV164343</a>
  49. <bold>Nami Y, Bakhshayesh RV, Manafi M, Hejazi MA.</bold> Hypocholesterolaemic activity of a novel autochthonous potential probiotic <em>Lactobacillus plantarum</em> YS5 isolated from yogurt. LWT-Food Sci Technol. 2019 Aug;111:876–882. <a href="https://doi.org/10.1016/j.lwt.2019.05.057" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.lwt.2019.05.057</a>
  50. <bold>Niu KM, Kothari D, Cho SB, Han SG, Song IG, Kim SC, Kim SK.</bold> Exploring the probiotic and compound feed fermentative applications of <em>Lactobacillus plantarum</em> SK1305 isolated from Korean green chili pickled pepper. Probiotics Antimicrob Proteins. 2019 Sep; 11(3):801–812. <a href="https://doi.org/10.1007/s12602-018-9447-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12602-018-9447-2</a>
  51. <bold>Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E.</bold> Discovering probiotic microorganisms: <em>in vitro</em>, <em>in vivo</em>, genetic and omics approaches. Front Microbiol. 2015 Feb 17;6:58. <a href="https://doi.org/10.3389/fmicb.2015.00058" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2015.00058</a>
  52. <bold>Pellegrino MS, Frola ID, Natanael B, Gobelli D, Nader-Macias MEF, Bogni CI.</bold> <em>In vitro</em> characterization of lactic acid bacteria isolated from bovine milk as potential probiotic strains to prevent bovine mastitis. Probiotics Antimicrob Proteins. 2019 Mar; 11(1):74–84. <a href="https://doi.org/10.1007/s12602-017-9383-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12602-017-9383-6</a>
  53. <bold>Piyadeatsoontorn S, Taharnklaew R, Upathanpreecha T, Sornplang P.</bold> Encapsulating viability of multi-strain <em>Lactobacilli</em> as potential probiotic in pigs. Probiotics Antimicrob Proteins. 2019 Jun;11(2):438–446. <a href="https://doi.org/10.1007/s12602-018-9418-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12602-018-9418-7</a>
  54. <bold>Popović N, Dinić M, Tolinački M, Mihajlović S, Terzić-Vidojević A, Bojić S, Djokić J, Golić N, Veljović K.</bold> New insight into biofilm formation ability, the presence of virulence genes and probiotic potential of <em>Enterococcus</em> sp. dairy isolates. Front Microbiol. 2018 Jan 30;9:78. <a href="https://doi.org/10.3389/fmicb.2018.00078" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2018.00078</a>
  55. <bold>Prabhurajeshwara C, Chandrakanth K.</bold> Evaluation of antimicrobial properties and their substances against pathogenic bacteria <em>in-vitro</em> by probiotic <em>Lactobacilli</em> strains isolated from commercial yoghurt. Clin Nutr Exp. 2019 Feb;23:97–115. <a href="https://doi.org/10.1016/j.yclnex.2018.10.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.yclnex.2018.10.001</a>
  56. <bold>Prasanna PHP, Charalampopolous D.</bold> Encapsulation of <em>Bifidobacterium longum</em> in alginate-dairy matrices and survival in simulated gastrointestinal conditions, refrigeration, cow milk and goat milk. Food Biosci. 2018 Feb;21:72–79. <a href="https://doi.org/10.1016/j.fbio.2017.12.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fbio.2017.12.002</a>
  57. <bold>Prete R, Long SL, Gallardo AL, Gahan CG, Corsetti A, Joyce SA.</bold> Beneficial bile acid metabolism from <em>Lactobacillus plantarum</em> of food origin. Sci Rep. 2020 Jan 24;10(1):1165. <a href="https://doi.org/10.1038/s41598-020-58069-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-020-58069-5</a>
  58. <bold>Pringsulaka O, Rueangyotchanthana K, Suwannasai N, Watanapokasin R, Amnueysit P, Sunthornthummas S, Sukkhum S, Sarawaneeyaruk S, Rangsiruji A.</bold> <em>In vitro</em> screening of lactic acid bacteria for multi-strain probiotics. Livest Sci. 2015 Apr;174:66–73. <a href="https://doi.org/10.1016/j.livsci.2015.01.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.livsci.2015.01.016</a>
  59. <bold>Ren D, Li C, Qin Y, Yin R, Du S, Ye F, Liu C, Liu H, Wang M, Li Y, et al.</bold> <em>In vitro</em> evaluation of the probiotic and functional potential of <em>Lactobacillus</em> strains isolated from fermented food and human intestine. Anaerobe. 2014 Dec;30:1–10. <a href="https://doi.org/10.1016/j.anaerobe.2014.07.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.anaerobe.2014.07.004</a>
  60. <bold>Ren DY, Zhu JW, Gong SJ, Liu HY, Yu HS.</bold> Antimicrobial characteristics of lactic acid bacteria isolated from homemade fermented foods. Biomed Res Int. 2018 Dec 30;2018:5416725. <a href="https://doi.org/10.1155/2018/5416725" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2018/5416725</a>
  61. <bold>Saliba L, Zoumpopoulou G, Anastasiou R, Hassoun G, Karayiannis Y, Sgouras D, Tsakalidoub E, Deiana P, Montanari L, Mangia NP.</bold> Probiotic and safety assessment of <em>Lactobacillus</em> strains isolated from Lebanese Baladi goat milk. Int Dairy J. 2021 Sep; 120: 105092. <a href="https://doi.org/10.1016/j.idairyj.2021.105092" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.idairyj.2021.105092</a>
  62. <bold>Shakibaie M, Mohammadi-Khorsand T, Adeli-Sardou M, Jafari M, Amirpour-Rostami S, Ameri A, Forootanfar H.</bold> Probiotic and antioxidant properties of selenium-enriched <em>Lactobacillus brevis</em> LSe isolated from an Iranian traditional dairy product. J Trace Elem Med Bio. 2017 Mar;40:1–9. <a href="https://doi.org/10.1016/j.jtemb.2016.11.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jtemb.2016.11.013</a>
  63. <bold>Sharma A, Lavania M, Singh R, Lal B.</bold> Identification and probiotic potential of lactic acid bacteria from camel milk. Saudi J Biol Sci. 2021 Mar;28(3):1622–1632. <a href="https://doi.org/10.1016/j.sjbs.2020.11.062" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.sjbs.2020.11.062</a>
  64. <bold>Sharma K, Attri S, Goel G.</bold> Selection and evaluation of probiotic and functional characteristics of autochthonous lactic acid bacteria isolated from fermented wheat flour dough babroo. Probiotics Antimicro. 2019 Sep 15;11:774–784. <a href="https://doi.org/10.1007/s12602-018-9466-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12602-018-9466-z</a>
  65. <bold>Shehata MG, El Sohaimy SA, El-Sahn MA, Youssef MM.</bold> Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Ann Agric Sci. 2016 Jun;61(1):65–75. <a href="https://doi.org/10.1016/j.aoas.2016.03.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.aoas.2016.03.001</a>
  66. <bold>Son SH, Jeon HL, Jeon EB, Lee NK, Park YS, Kang DK, Paik HD.</bold> Potential probiotic <em>Lactobacillus plantarum</em> Ln4 from kimchi: Evaluation of β-galactosidase and antioxidant activities. LWT-Food Sci Technol. 2017 Nov;85(Part A):181–186. <a href="http://doi.org/10.1016/j.lwt.2017.07.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">http://doi.org/10.1016/j.lwt.2017.07.018</a>
  67. <bold>Sun NX, Liu HP, Liu SJ, Zhang XY, Chen P, Li WH, Xu XX, Tian WT.</bold> Purification, preliminary structure and antitumor activity of exopolysaccharide produced by <em>Streptococcus thermophilus</em> CH9. Molecules. 2018 Nov 6;23(11):2898. <a href="https://doi.org/10.3390/molecules23112898" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules23112898</a>
  68. <bold>Talebi S, Makhdoumi A, Bahreini M, Matin MM, Moradi HS.</bold> Three novel <em>Bacillus</em> strains from a traditional lacto-fermented pickle as potential probiotics. J Appl Microbiol. 2018 Sep;125(3):888–896. <a href="https://doi.org/10.1111/jam.13901" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/jam.13901</a>
  69. <bold>Tang W, Xing Z, Li C, Wang J, Wang Y.</bold> Molecular mechanisms and <em>in vitro</em> antioxidant effects of <em>Lactobacillus plantarum</em> MA2. Food Chem. 2017 Apr 15;221:1642–1649. <a href="https://doi.org/10.1016/j.foodchem.2016.10.124" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.foodchem.2016.10.124</a>
  70. <bold>Thirabunyanon M, Boonprasom P, Niamsup P.</bold> Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol Lett. 2009 Apr;31(4):571–576. <a href="https://doi.org/10.1007/s10529-008-9902-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10529-008-9902-3</a>
  71. <bold>Verdenelli MC, Ghelfi F, Silvi S, Orpianesi C, Cecchini C, Cresci A.</bold> Probiotic properties of <em>Lactobacillus rhamnosus</em> and <em>Lactobacillus paracasei</em> isolated from human faeces. Eur J Nutr. 2009 Sep;48(6):355–363. <a href="https://doi.org/10.1007/s00394-009-0021-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00394-009-0021-2</a>
  72. <bold>Wang X, Wang WD, Lv HX, Zhang H, Liu Y, Zhang M, Wang YP, Tan ZF.</bold> Probiotic potential and wide-spectrum antimicrobial activity of lactic acid bacteria isolated from infant feces. Probiotics Antimicrob Proteins. 2021 Feb;13(1):90–101. <a href="https://doi.org/10.1007/s12602-020-09658-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12602-020-09658-3</a>
  73. <bold>Widyastuti Y, Febrisiantosa A.</bold> The role of lactic acid bacteria in milk fermentation. Food Nutr Sci. 2014 Feb;5(4):435–442. <a href="https://doi.org/10.4236/fns.2014.54051" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4236/fns.2014.54051</a>
  74. <bold>Xia Y, Qin SK, Shen YQ.</bold> Probiotic potential of <em>Weissella</em> strains isolated from horse feces. Microb Pathog. 2019 Jul;132:117–123. <a href="https://doi.org/10.1016/j.micpath.2019.04.032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.micpath.2019.04.032</a>
  75. <bold>Yang E, Fan LH, Yan JP, Jiang YM, Doucette C, Fillmore S, Walker B.</bold> Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express. 2018 Jan 24;8(1):10. <a href="https://doi.org/10.1186/s13568-018-0536-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s13568-018-0536-0</a>
  76. <bold>Yang XY, Ke CX, Li L.</bold> Physicochemical, rheological and digestive characteristics of soy protein isolate gel induced by lactic acid bacteria. J Food Eng. 2021 Mar;292:110243. <a href="https://doi.org/10.1016/j.jfoodeng.2020.110243" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jfoodeng.2020.110243</a>
  77. <bold>Yu HS, Lee NK, Choi AJ, Choe JS, Bae CH, Paik HD.</bold> Antagonistic and antioxidant effect of probiotic <em>Weissella cibaria</em> JW15. Food Sci Biotechnol. 2018 Nov 22;28(3):851–855. <a href="https://doi.org/10.1007/s10068-018-0519-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10068-018-0519-6</a>
  78. <bold>Yüceer Ö, Özden Tuncer B.</bold> Determination of antibiotic resistance and biogenic amine production of lactic acid bacteria isolated from fermented Turkish sausage (sucuk). J Food Saf. 2015 Jan 8;35:276–285. <a href="https://doi.org/10.1111/jfs.12177" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/jfs.12177</a>
  79. <bold>Zuo FL, Feng XJ, Chen LL, Chen SW.</bold> Identification and partial characterization of lactic acid bacteria isolated from traditional dairy products produced by herders in the western Tianshan Mountains of China. Lett Appl Microbiol. 2014 Nov;59(5)::549–556. <a href="https://doi.org/10.1111/lam.12313" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/lam.12313</a>
DOI: https://doi.org/10.33073/pjm-2022-012 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 91 - 105
Submitted on: Nov 10, 2021
Accepted on: Feb 19, 2022
Published on: Mar 30, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Changjun Wu, Chenwei Dai, Lin Tong, Han Lv, Xiuhong Zhou, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.