Have a personal or library account? Click to login
In vitro Effects of Prebiotics and Synbiotics on Apis cerana Gut Microbiota Cover

In vitro Effects of Prebiotics and Synbiotics on Apis cerana Gut Microbiota

Open Access
|Dec 2021

References

  1. Abdel-Moneim AME, Elbaz AM, Khidr RES, Badri FB. Effect of in ovo inoculation of Bifidobacterium spp. on growth performance, thyroid activity, ileum histomorphometry, and microbial enumeration of broilers. Probiotics Antimicrob Proteins. 2020 Sep; 12(3):873–882. https://doi.org/10.1007/s12602-019-09613-x
  2. Audisio MC, Sabaté DC, Benítez-Ahrendts MR. Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut. Benef Microbes. 2015 Oct 15;6(5):687–695. https://doi.org/10.3920/BM2014.0155
  3. Carlson J, Erickson J, Hess J, Gould T, Slavin J. Prebiotic dietary fiber and gut health: comparing the in vitro fermentations of beta-glucan, inulin and xylooligosaccharide. Nutrients. 2017 Dec 15; 9(12):1361. https://doi.org/10.3390/nu9121361
  4. Chen C, Liu Z, Luo Y, Xu Z, Wang S, Zhang X, Dai R, Gao J, Chen X, Guo H, et al. Managed honeybee colony losses of the Eastern honeybee (Apis cerana) in China (2011–2014). Apidologie. 2017 Sep;48(5):692–702. https://doi.org/10.1007/s13592-017-0514-6
  5. Dai P, Yan Z, Ma S, Yang Y, Wang Q, Hou C, Wu Y, Liu Y, Diao Q. The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared in vitro. J Agric Food Chem. 2018 Jul 25;66(29):7786–7793. https://doi.org/10.1021/acs.jafc.8b02212
  6. Driessen FM, Deboer R. Fermented milks with selected intestinal bacteria – a healthy trend in new products. Neth Milk Dairy J. 1989;43(3):367–382.
  7. Duan X, Zhao B, Jin X, Cheng X, Huang S, Li J. Antibiotic treatment decrease the fitness of honeybee (Apis mellifera) larvae. Insects. 2021 Mar 30;12(4):301. https://doi.org/10.3390/insects12040301
  8. Ellegaard KM, Tamarit D, Javelind E, Olofsson TC, Andersson SGE, Vásquez A. Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut. BMC Genomics. 2015 Dec;16(1):284. https://doi.org/10.1186/s12864-015-1476-6
  9. Fehlbaum S, Prudence K, Kieboom J, Heerikhuisen M, van den Broek T, Schuren F, Steinert R, Raederstorff D. In vitro fermentation of selected prebiotics and their effects on the composition and activity of the adult gut microbiota. Int J Mol Sci. 2018 Oct 10;19(10):3097. https://doi.org/10.3390/ijms19103097
  10. Fünfhaus A, Ebeling J, Genersch E. Bacterial pathogens of bees. Curr Opin Insect Sci. 2018 Apr;26:89–96. https://doi.org/10.1016/j.cois.2018.02.008
  11. Ge Y, Jing Z, Diao Q, He JZ, Liu YJ. Host species and geography differentiate honeybee gut bacterial communities by changing the relative contribution of community assembly processes. MBio. 2021 Jun 29;12(3):e0075121. https://doi.org/10.1128/mBio.00751-21
  12. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017 Aug;14(8):491–502. https://doi.org/10.1038/nrgastro.2017.75
  13. Gilliam M, Prest DB. Fungi isolated from the intestinal contents of foraging worker honey bees, Apis mellifera. J Invertebr Pathol. 1972 Jul;20(1):101–103. https://doi.org/10.1016/0022-2011(72)90087-0
  14. Gmeiner M, Kneifel W, Kulbe KD, Wouters R, De Boever P, Nollet L, Verstraete W. Influence of a synbiotic mixture consisting of Lactobacillus acidophilus 74-2 and a fructooligosaccharide preparation on the microbial ecology sustained in a simulation of the human intestinal microbial ecosystem (SHIME reactor). Appl Microbiol Biotechnol. 2000 Feb 1;53(2):219–223. https://doi.org/10.1007/s002530050011
  15. Goffin D, Delzenne N, Blecker C, Hanon E, Deroanne C, Paquot M. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit Rev Food Sci Nutr. 2011 Apr 14;51(5):394–409. https://doi.org/10.1080/10408391003628955
  16. Henrique-Bana FC, Wang X, Costa GN, Spinosa WA, Miglioranza LHS, Scorletti E, Calder PC, Byrne CD, Gibson GR. In vitro effects of Bifidobacterium lactis-based synbiotics on human faecal bacteria. Food Res Int. 2020 Feb;128(Feb):108776. https://doi.org/10.1016/j.foodres.2019.108776
  17. Houdelet C, Sinpoo C, Chantaphanwattana T, Voisin SN, Bocquet M, Chantawannakul P, Bulet P. Proteomics of anatomical sections of the gut of Nosema-infected Western Honeybee (Apis mellifera) reveals different early responses to Nosema spp. isolates. J Proteome Res. 2021 Jan 01;20(1):804–817. https://doi.org/10.1021/acs.jproteome.0c00658
  18. Khalifa SAM, Elshafiey EH, Shetaia AA, El-Wahed AAA, Algethami AF, Musharraf SG, AlAjmi MF, Zhao C, Masry SHD, Abdel-Daim MM, et al. Overview of bee pollination and its economic value for crop production. Insects. 2021 Jul 31;12(8):688. https://doi.org/10.3390/insects12080688
  19. Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. Importance of pollinators in changing landscapes for world crops. Proc Biol Sci. 2007 Feb 07; 274(1608):303–313. https://doi.org/10.1098/rspb.2006.3721
  20. Koleva P, Ketabi A, Valcheva R, Gänzle MG, Dieleman LA. Chemically defined diet alters the protective properties of fructo-oligosaccharides and isomalto-oligosaccharides in HLA-B27 transgenic rats. PLoS One. 2014 Nov 4;9(11):e111717. https://doi.org/10.1371/journal.pone.0111717
  21. Kwong WK, Moran NA. Gut microbial communities of social bees. Nat Rev Microbiol. 2016 Jun;14(6):374–384. https://doi.org/10.1038/nrmicro.2016.43
  22. Lei Q, Wang S, Yin H, Cheng Y, Yu H, Pan H, Lin Q, Cao Z. [Effects of Lactobacillus reuteri LP4 on the survival rate, intestinal microbiota composition and gut antimicrobial peptide gene expression in adult workers of Apis cerana Fabricius] (in Chinese). J Yunnan Agric Univ (Nat Sci). 2020;35(05):796–803.
  23. Likotrafiti E, Tuohy KM, Gibson GR, Rastall RA. An in vitro study of the effect of probiotics, prebiotics and synbiotics on the elderly faecal microbiota. Anaerobe. 2014 Jun;27:50–55. https://doi.org/10.1016/j.anaerobe.2014.03.009
  24. Logtenberg MJ, Akkerman R, Hobé RG, Donners KMH, Van Leeuwen SS, Hermes GDA, Haan BJ, Faas MM, Buwalda PL, Zoetendal EG, et al. Structure-specific fermentation of galacto-oligosaccharides, isomalto-oligosaccharides and isomalto/malto-polysaccharides by infant fecal microbiota and impact on dendritic cell cytokine responses. Mol Nutr Food Res. 2021 Aug;65(16):2001077. https://doi.org/10.1002/mnfr.202001077
  25. Molly K, De Smet I, Nollet L, Vande Woestyne M, Verstraete W. Effect of lactobacilli on the ecology of the gastro-intestinal microbiota cultured in the SHIME reactor. Microb Ecol Health Dis. 1996 Mar;9(2):79–89. https://doi.org/10.3109/08910609609166446
  26. Nainu F, Masyita A, Bahar MA, Raihan M, Prova SR, Mitra S, Emran TB, Simal-Gandara J. Pharmaceutical prospects of bee products: special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics (Basel). 2021 Jul 06;10(7):822. https://doi.org/10.3390/antibiotics10070822
  27. Okazaki Y, Katayama T. Consumption of non-digestible oligosaccharides elevates colonic alkaline phosphatase activity by up-regulating the expression of IAP-I, with increased mucins and microbial fermentation in rats fed a high-fat diet. Br J Nutr. 2019 Jan 28;121(2):146–154. https://doi.org/10.1017/S0007114518003082
  28. Ortiz-Alvarado Y, Clark DR, Vega-Melendez CJ, Flores-Cruz Z, Domingez-Bello MG, Giray T. Antibiotics in hives and their effects on honey bee physiology and behavioral development. Biol Open. 2020 Jan 01;9(11):bio.053884. https://doi.org/10.1242/bio.053884
  29. Pachla A, Ptaszyńska AA, Wicha M, Kunat M, Wydrych J, Oleńska E, Małek W. Insight into probiotic properties of lactic acid bacterial endosymbionts of Apis mellifera L. derived from the Polish apiary. Saudi J Biol Sci. 2021 Mar;28(3):1890–1899. https://doi.org/10.1016/j.sjbs.2020.12.040
  30. Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics – a review. J Food Sci Technol. 2015 Dec;52(12):7577–7587. https://doi.org/10.1007/s13197-015-1921-1
  31. Poeker SA, Geirnaert A, Berchtold L, Greppi A, Krych L, Steinert RE, de Wouters T, Lacroix C. Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Sci Rep. 2018 Dec;8(1):4318. https://doi.org/10.1038/s41598-018-22438-y
  32. Ptaszyńska AA, Paleolog J, Borsuk G. Nosema ceranae infection promotes proliferation of yeasts in honey bee intestines. PLoS One. 2016 Oct 13;11(10):e0164477. https://doi.org/10.1371/journal.pone.0164477
  33. Ramos OY, Basualdo M, Libonatti C, Vega MF. Current status and application of lactic acid bacteria in animal production systems with a focus on bacteria from honey bee colonies. J Appl Microbiol. 2020 May;128(5):1248–1260. https://doi.org/10.1111/jam.14469
  34. Rastall RA, Gibson GR. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol. 2015 Apr;32:42–46. https://doi.org/10.1016/j.copbio.2014.11.002
  35. Raymann K, Bobay LM, Moran NA. Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome. Mol Ecol. 2018 Apr;27(8):2057–2066. https://doi.org/10.1111/mec.14434
  36. Raymann K, Shaffer Z, Moran NA. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 2017 Mar 14;15(3):e2001861. https://doi.org/10.1371/journal.pbio.2001861
  37. Rycroft CE, Jones MR, Gibson GR, Rastall RA. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol. 2001 Nov 23;91(5):878–887. https://doi.org/10.1046/j.1365-2672.2001.01446.x
  38. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019 Oct;16(10):605–616. https://doi.org/10.1038/s41575-019-0173-3
  39. Śliżewska K, Chlebicz A. Synbiotics impact on dominant faecal microbiota and short-chain fatty acids production in sows. FEMS Microbiol Lett. 2019 Jul;366(13): fnz157. https://doi.org/10.1093/femsle/fnz157
  40. Sorndech W, Nakorn KN, Tongta S, Blennow A. Isomalto-oligosaccharides: recent insights in production technology and their use for food and medical applications. LWT Food Sci Technol. 2018 Sep; 95:135–142. https://doi.org/10.1016/j.lwt.2018.04.098
  41. Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, Scott KP, Holscher HD, Azad MB, Delzenne NM, et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol. 2020 Nov;17(11):687–701. https://doi.org/10.1038/s41575-020-0344-2
  42. Tandon D, Haque MM, Gote M, Jain M, Bhaduri A, Dubey AK, Mande SS. A prospective randomized, double-blind, placebo-controlled, dose-response relationship study to investigate efficacy of fructo-oligosaccharides (FOS) on human gut microflora. Sci Rep. 2019 Dec;9(1):5473. https://doi.org/10.1038/s41598-019-41837-3
  43. Tornero-Martínez A, Cruz-Ortiz R, Jaramillo-Flores ME, Osorio-Díaz P, Ávila-Reyes SV, Alvarado-Jasso GM, Mora-Escobedo R. In vitro fermentation of polysaccharides from Aloe vera and the evaluation of antioxidant activity and production of short chain fatty acids. Molecules. 2019 Oct 07;24(19):3605. https://doi.org/10.3390/molecules24193605
  44. Wang L, Hu L, Yan S, Jiang T, Fang S, Wang G, Zhao J, Zhang H, Chen W. Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation. Food Funct. 2017;8(5):1966–1978. https://doi.org/10.1039/C7FO00031F
  45. Wang S, Gao J, Liu J, Zhao D. Morphometric characterization of Apis cerana hainana (Hymenoptera: Apidae) in Hainan province, P.R. China. J Apic Res. 2021 Mar 15;60(2):337–340. https://doi.org/10.1080/00218839.2020.1753326
  46. Wang S. [Diversity of intestinal microbial and prebiotic function of lactic acid bacteria in Apis Cerana Fabricius] [Master Thesis] (in Chinese). Kunming (People’s Republic of China): Yunnan Agricultural University; 2018.
  47. Watson D, O’Connell Motherway M, Schoterman MHC, van Neerven RJJ, Nauta A, van Sinderen D. Selective carbohydrate utilization by lactobacilli and bifidobacteria. J Appl Microbiol. 2013 Apr;114(4):1132–1146. https://doi.org/10.1111/jam.12105
  48. Williams NT. Probiotics. Am J Health Syst Pharm. 2010 Mar 15; 67(6):449–458. https://doi.org/10.2146/ajhp090168
DOI: https://doi.org/10.33073/pjm-2021-049 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 511 - 520
Submitted on: Oct 6, 2021
Accepted on: Nov 27, 2021
Published on: Dec 20, 2021
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 MINGKUI LV, QINGZHI LEI, HUAJUAN YIN, TIANNIAN HU, SIFAN WANG, KUN DONG, HONGBIN PAN, YIQIU LIU, QIUYE LIN, ZHENHUI CAO, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.