Have a personal or library account? Click to login
Bacterial Community Analysis and Potential Functions of Core Taxa in Different Parts of the Fungus Cantharellus cibarius Cover

Bacterial Community Analysis and Potential Functions of Core Taxa in Different Parts of the Fungus Cantharellus cibarius

Open Access
|Sep 2021

Abstract

Cantharellus cibarius is a widely distributed, popular, edible fungus with high nutritional and economic value. However, significant challenges persist in the microbial ecology and artificial cultivation of C. cibarius. Based on the 16S rRNA sequencing data, this study analyzed bacterial community structures and diversity of fruit bodies and rhizomorph parts of C. cibarius and mycosphere samples (collected in the Wudang District, Guiyang, Guizhou Province, China). It explored the composition and function of the core bacterial taxa. The analyzed results showed that the rhizomorph bacterial community structure was similar to mycosphere, but differed from the fruit bodies. Members of the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium complex had the highest abundance in the fruit bodies. However, they were either absent or low in abundance in the rhizomorphs and mycosphere. At the same time, members of the Burkholderia-Caballeronia-Paraburkholderia complex were abundant in the fruit bodies and rhizomorphs parts of C. cibarius, as well as mycosphere. Through functional annotation of core bacterial taxa, we found that there was an apparent trend of potential functional differentiation of related bacterial communities in the fruit body and rhizomorph: potential functional groups of core bacterial taxa in the fruit bodies centered on nitrogen fixation, nitrogen metabolism, and degradation of aromatic compounds, while those in rhizomorphs focused on aerobic chemoheterotrophy, chemoheterotrophy, defense against soil pathogens, decomposition of complex organic compounds, and uptake of insoluble inorganic compounds. The analysis of functional groups of bacteria with different structures is of great significance to understand that bacteria promote the growth and development of C. cibarius.

DOI: https://doi.org/10.33073/pjm-2021-035 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 373 - 385
Submitted on: Apr 17, 2021
Accepted on: Jul 25, 2021
Published on: Sep 17, 2021
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 WEI GE, ZHI-YUAN ZHANG, CHUN-BO DONG, YAN-FENG HAN, SUNIL K. DESHMUKH, ZONG-QI LIANG, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.