Have a personal or library account? Click to login
The Effect of Long-Term Storage on Mycobacterium bovis Cover

References

  1. Angeby KA, Klintz L, Hoffner SE. Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J Clin Microbiol. 2002 Feb;40(2):553–555. https://doi.org/10.1128/jcm.40.2.553-555.2002
  2. Anuchin AM, Mulyukin AL, Suzina NE, Duda VI, El-Registan GI, Kaprelyants AS. Dormant forms of Mycobacterium smegmatis with distinct morphology. Microbiology. 2009 Apr;155(4):1071–1079. https://doi.org/10.1099/mic.0.023028-0
  3. Bentrup KH, Russell DG. Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol. 2001 Dec;9(12):597–605. https://doi.org/10.1016/S0966-842X(01)02238-7
  4. Bertrand T, Eady NA, Jones JN, Jesmin, Nagy JM, Jamart-Grégoire B, Raven EL, Brown KA. Crystal structure of Mycobacterium tuberculosis catalase-peroxidase. J Biol Chem. 2004 Sep 10; 279(37):38991–38999. https://doi.org/10.1074/jbc.M402382200
  5. Bönicke R, Juhasz SE, Diemer U. Studies on the nitrate reductase activity of mycobacteria in the presence of fatty acids and related compounds. Am Rev Respir Dis. 1970 Oct;102(4):507–515. https://doi.org/10.1164/arrd.1970.102.4.507
  6. Cunningham AF, Spreadbury CL. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton α-crystallin homolog. J Bacteriol. 1998 Feb;180(4):801–808. https://doi.org/10.1128/JB.180.4.801-808.1998
  7. Dick T, Lee BH, Murugasu-Oei B. Oxygen depletion induced dormancy in Mycobacterium smegmatis. FEMS Microbiol Lett. 1998 Jun 15;163(2):159–164. https://doi.org/10.1111/j.1574-6968.1998.tb13040.x
  8. Djachenko GM, Kravchenko NO, Golovach OV, Dmytruk OM, Il’i’nyh VV. [Variability of phenotypical markings of mycobacteries of different kinds with acquired medicamentose stability] (in Ukrainian). Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj. 2008;10(3):72–77.
  9. Djachenko GM, Kravchenko NO, Il’i’nyh VV, Dmytruk OM, Golovach OV. [Adaptation and variability of the properties of mycobacteria of different species for the influence of antibacterial drugs] (in Ukrainan). Sil’s’kogospodars’ka mikrobiologija: Mizhvid. temat. nauk. zb. 2009;9:158–165.
  10. Fonseca Lde S, Vieira GB, Sobral LF, Ribeiro EO, Marsico AG. Comparative evaluation under routine conditions of the nitrate reduction assay, the proportion assay and the MGIT 960 assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. Mem Inst Oswaldo Cruz. 2012 Feb;107(1):142–144. https://doi.org/10.1590/s0074-02762012000100021
  11. Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J, Mohaideen N, Ioerger TR, Sacchettini JC, Lipsitch M, et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet. 2011 May; 43(5):482–486. https://doi.org/10.1038/ng.811
  12. Fritz C, Maass S, Kreft A, Bange FC. Dependence of Mycobacterium bovis BCG on anaerobic nitrate reductase for persistence is tissue specific. Infect Immun. 2002 Jan;70(1):286–291. https://doi.org/10.1128/iai.70.1.286-291.2002
  13. Gillespie J, Barton LL, Rypka EW. Phenotypic changes in mycobacteria grown in oxygen-limited conditions. J Med Microbiol. 1986 May;21(3):251–255. https://doi.org/10.1099/00222615-21-3-251
  14. Glebenjuk VV, Telizhenko KV. [Species affiliation of mycobacterium isolated from animals in the Dnipropetrovsk region] (in Ukrainian). Scientific and Technical Bulletin of the National State Center of Biosafety and Environmental Control of Resources of Agroindustrial Complex. 2015;3(1):61–64. Available from http://biosafety-center.com/wp-content/uploads/2015/06/2.pdf
  15. Gomez JE, McKinney JD. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis. 2004;84(1–2):29–44. https://doi.org/10.1016/j.tube.2003.08.003
  16. Hu YM, Butcher PD, Sole K, Mitchison DA, Coates ARM. Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock. FEMS Microbiol Lett. 1998 Jan 1;158(1):139–145. https://doi.org/10.1111/j.1574-6968.1998.tb12813.x
  17. Kondratjuk N, Sybirna R. [Usage and modification of biochemical tests confirming the belonging of isolated cultures to tuberculosis mycobacteria] (in Ukrainian). Visnyk L’viv Univ. 2008;47:70–73. Available from http://old.franko.lviv.ua/faculty/biologh/wis/47/2/8/8.pdf
  18. Kovaleva LO. [Special adaptive capabilities of fast-growing strains of M. bovis on artificial hard places for numerous passages] (in Ukrainian). Bulletin of the Poltava Service of the Agrarian Academy. 2005;1:166–168.
  19. Kumar R, Sanyal S. Mycobacterium tuberculosis: dormancy, persistence and survival in the light of protein synthesis. In: Cardona PJ, editor. Understanding tuberculosis – deciphering the secret life of the bacilli. Rijeka (Croatia): IntechOpen; 2012. p. 217–238. https://doi.org/10.5772/31098
  20. Lemus D, Montoro E, Echemendía M, Martin A, Portaels F, Palomino JC. Nitrate reductase assay for detection of drug resistance in Mycobacterium tuberculosis: simple and inexpensive method for low-resource laboratories. J Med Microbiol. 2006 Jul;55(7):861–863. https://doi.org/10.1099/jmm.0.46540-0
  21. Lewis AH, Falkinham JO 3rd. Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. Int J Mycobacteriol. 2015 Mar; 4(1):25–30. https://doi.org/10.1016/j.ijmyco.2014.11.066
  22. Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007 Jan;5(1):48–56. https://doi.org/10.1038/nrmicro1557
  23. Li Z, Kelley C, Collins F, Rouse D, Morris S. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J Infect Dis. 1998 Apr;177(4):1030–1035. https://doi.org/10.1086/515254
  24. Lysenko AP, Vlasenko ІG, Vlasenko VV, Babijchuk JV. [Biochemical properties of bacillary and modified forms of mycobacteria grown on nutrient media] (in Russian). Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj. 2011;13(4):249–252.
  25. Lysenko OP, Vlasenko VV, Palii HK, Vlasenko IH, Nazarchuk OA. [Mycobacterium of tuberculosis with defective cell wall, determined in the brain of the biological model with spongional changes] (in Ukrainian). Reports of Vinnytsia National Medical University. 2019;23(1):12–19. https://doi.org/10.31393/reports-vnmedical-2019-23(1)-02
  26. Manca C, Paul S, Barry CE, Freedman VH, Kaplan G. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect Immun. 1999 Jan;67(1):74–79. https://doi.org/10.1128/IAI.67.1.74-79.1999
  27. Manchenko VM, Trocenko ZR, Pavlenko MS. [Guidelines for diagnosing tuberculosis] (in Ukrainian). Kyiv. 1994:39.
  28. Martin A, Palomino JC, Portaels F. Rapid detection of ofloxacin resistance in Mycobacterium tuberculosis by two low-cost colorimetric methods: resazurin and nitrate reductase assays. J Clin Microbiol. 2005 Apr;43(4):1612–1616. https://doi.org/10.1128/JCM.43.4.1612-1616.2005
  29. Montoro E, Lemus D, Echemendia M, Martin A, Portaels F, Palomino JC. Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother. 2005 Apr;55(4):500–505. https://doi.org/10.1093/jac/dki023
  30. Nyka W. Studies on the effect of starvation on mycobacteria. Infect Immun. 1974 May;9(5):843–50. https://doi.org/10.1128/iai.9.5.843-850.1974
  31. Philippot L, Højberg O. Dissimilatory nitrate reductases in bacteria. Biochim Biophys Acta. 1999 Jul 7;1446(1–2):1–23. https://doi.org/10.1016/s0167-4781(99)00072-x
  32. Portillo-Gómez L, Morris SL, Panduro A. Rapid and efficient detection of extra-pulmonary Mycobacterium tuberculosis by PCR analysis. Int J Tuberc Lung Dis. 2000 Apr;4(4):361–370.
  33. Primm TP, Andersen SJ, Mizrahi V, Avarbock D, Rubin H, Barry CE. The stringent response of Mycobacterium tuberculosis is required for long-term survival. Bacteriol. 2000 Sep;182(17): 4889–4898. https://doi.org/10.1128/JB.182.17.4889-4898.2000
  34. Ritz N, Hanekom WA, Robins-Browne R, Britton WJ, Curtis N. Influence of BCG vaccine strain on the immune response and protection against tuberculosis. FEMS Microbiol Rev. 2008 Aug;32(5):821–841. https://doi.org/10.1111/j.1574-6976.2008.00118.x
  35. Rodriguez JG, Mejia GA, Del Portillo P, Patarroyo ME, Murillo LA. Species-specific identification of Mycobacterium bovis by PCR. Microbiology. 1995 Sep;141(9):2131–2138. https://doi.org/10.1099/13500872-141-9-2131
  36. Shleeva MO, Bagramyan K, Telkov MV, Mukamolova GV, Young M, Kell DB, Kaprelyants AS. Formation and resuscitation of “non-culturable” cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology. 2002 May;148(5):1581–1591. https://doi.org/10.1099/00221287-148-5-1581
  37. Shleeva MO, Kudykina YK, Vostroknutova GN, Suzina NE, Mulyukin AL, Kaprelyants AS. Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification. Tuberculosis. 2011 Mar;91(2):146–154. https://doi.org/10.1016/j.tube.2010.12.006
  38. Smeulders MJ, Keer J, Speight RA, Williams HD. Adaptation of Mycobacterium smegmatis to stationary phase. J Bacteriol. 1999 Jan;181(1):270–283. https://doi.org/10.1128/JB.181.1.270-283.1999
  39. Tkachenko O, Bilan M, Hlebeniuk V, Alekseeva N, Nedosekov V, Galatiuk O. Chronology of morphological forms of Mycobacterium bovis rapid-growing strain. Acta Vet Eurasia. 2020a;46(3):104–114. https://doi.org/10.5152/actavet.2020.20007
  40. Tkachenko O, Bilan M, Hlebeniuk V, Kozak N, Nedosekov V, Galatiuk O. Dissociation of Mycobacterium bovis: morphology, biological properties and lipids. Adv Anim Vet Sci. 2020b;8(3):312–326. https://doi.org/10.17582/journal.aavs/2020/8.3.317.326
  41. Tkachenko OA. [Rapid-growing M. bovis in the problem of tuberculosis] (in Ukrainian). Veterinary Medicine of Ukraine. 2004; 7: 14–17. Available from http://dspace.dsau.dp.ua/jspui/handle/123456789/745
  42. Torkko P, Suutari M, Suomalainen S, Paulin L, Larsson L, Katila ML. Separation among Species of Mycobacterium terrae Complex by Lipid Analyses: Comparison with Biochemical Tests and 16S rRNA Sequencing. J Clin Microbiol. 1998 Feb;36(2):499–505. https://doi.org/10.1128/JCM.36.2.499-505.1998
  43. Usha V, Jayaraman R, Toro JC, Hoffner SE, Das KS. Glycine and alanine dehydrogenase activities are catalyzed by the same protein in Mycobacterium smegmatis: upregulation of both activities under microaerophilic adaptation. Can J Microbiol. 2002 Jan;48(1):7–13. https://doi.org/10.1139/w01-126
  44. Velayati AA, Farnia P, Ibrahim TA, Haroun RZ, Kuan HO, Ghanavi J, Farnia P, Kabarei AN, Tabarsi P, Omar AR, et al. Differences in cell wall thickness between resistant and nonresistant strains of Mycobacterium tuberculosis: using transmission electron microscopy. Chemotherapy. 2009;55(5):303–307. https://doi.org/10.1159/000226425
  45. Velayati AA, Farnia P. Division-cycle in Mycobacterium tuberculosis. Int J Mycobacteriol. 2012 Sep;1(3):111–117. https://doi.org/10.1016/j.ijmyco.2012.08.003
  46. Vera HD, Rettger LF. Morphological variations of the tubercle bacillus and certain recently isolated soil acid fasts with emphasis on filterability. J Bacteriol. 1940 Jun;39(6):659–687. https://doi.org/10.1128/JB.39.6.659-687.1940
  47. Wayne LG, Lin KY. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun. 1982 Sep;37(3):1042–1049. https://doi.org/10.1128/iai.37.3.1042-1049.1982
  48. Wayne LG, Sramek HA. Agents of newly recognized or infrequently encountered mycobacterial diseases. Clin Microbiol Rev. 1992 Jan; 5(1):1–25. https://doi.org/10.1128/CMR.5.1.1
  49. Yavorska GV, Sybirna RI. [Morphologic-cultural and physiologic-biochemical properties of atypical mycobacteria] (in Ukrainian). Mikrobiolohichnyi zhurnal. 2009;71(4):27–34. Available from http://dspace.nbuv.gov.ua/bitstream/handle/123456789/7790/05-Yavorivska.pdf
  50. Young M, Mukamolova GV, Kaprelyants AS. Mycobacterial dormancy and its relation to persistence. In: Parish T, editor. Mycobacterial molecular biology. Norfolk (UK): Horizon Bioscience; 2005. p. 265–320.
  51. Zhang L, Ru HW, Chen FZ, Jin CY, Sun RF, Fan XY, Guo M, Mai JT, Xu WX, Lin QX, et al. Variable virulence and efficacy of BCG vaccine strains in mice and correlation with genome polymorphisms. Mol Ther. 2016 Feb;24(2):398–405. https://doi.org/10.1038/mt.2015.216
  52. Zhurylo OA, Barbova AI, Glushkevych TG, Tretjakova LV. [Standards of bacteriological diagnosis of tuberculosis in laboratories of tuberculosis establishments of Ukraine] (in Ukrainian). Ministerstvo ohorony zdorov’ja Ukrai’ny i Nacional’na akademija medychnyh nauk Ukrai’ny Derzhavna ustanova “Nacional’nyj instytut ftyziatrii’ i pul’monologii’ im. F.G. Janovs’kogo NAMN Ukrai’ny”. Navchal’nyj posibnyk dlja fahivciv bakteriologichnyh laboratorij zakladiv protytuberkul’oznoi’ sluzhby Ukrai’ny. 2012;188. Available from http://www.ifp.kiev.ua/ftp1/metoddoc/posibnyk_1_2012.pdf
DOI: https://doi.org/10.33073/pjm-2021-031 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 327 - 337
Submitted on: Mar 11, 2021
|
Accepted on: Jul 14, 2021
|
Published on: Sep 17, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 OLEXIY TKACHENKO, NATALI KOZAK, MARYNA BILAN, VOLODYMYR HLEBENIUK, NATALIA ALEKSEEVA, LILIYA KOVALEVA, VITALII NEDOSEKOV, OLEXANDR GALATIUK, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.