Have a personal or library account? Click to login
Improved Biosurfactant Production by Enterobacter cloacae B14, Stability Studies, and its Antimicrobial Activity Cover

Improved Biosurfactant Production by Enterobacter cloacae B14, Stability Studies, and its Antimicrobial Activity

Open Access
|Aug 2020

References

  1. Aparna A, Srinikethan G, Smitha H. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf B Biointerfaces. 2012 Jun;95:23–29. https://doi.org/10.1016/j.colsurfb.2012.01.043
  2. Batool R, Ayub S, Akbar I. Isolation of biosurfactant producing bacteria from petroleum contaminated sites and their characterization. Soil Environ. 2017 May 28;36(01):35–44. https://doi.org/10.25252/SE/17/20992
  3. Bhadoriya SS, Madoriya N, Shakla K, Parihar MS. Biosurfactants: a new pharmaceutical additive for solubility enhancement and pharmaceutical development. Biochem Pharmacol (Los Angel). 2013;02(02):113. https://doi.org/10.4172/2167-0501.1000113
  4. Cooper DG, Goldenberg BG. Surface-active agents from two bacillus species. Appl Environ Microbiol. 1987;53(2):224–229. https://doi.org/10.1128/AEM.53.2.224-229.1987
  5. de Freitas Ferreira J, Vieira EA, Nitschke M. The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res Int. 2019 Feb;116:737–744. https://doi.org/10.1016/j.foodres.2018.09.005
  6. Derguine-Mecheri L, Kebbouche-Gana S, Khemili-Talbi S, Djenane D. Screening and biosurfactant/bioemulsifier production from a high-salt-tolerant halophilic Cryptococcus strain YLF isolated from crude oil. J Petrol Sci Eng. 2018 Mar;162:712–724. https://doi.org/10.1016/j.petrol.2017.10.088
  7. Ekprasert J, Laopila K, Kanakai S. Biosurfactant production by a newly isolated Enterobacter cloacae B14 capable of utilizing spent engine oil. Pol J Environ Stud. 2019 Apr 9;28(4):2603–2610. https://doi.org/10.15244/pjoes/92120
  8. Fontes GC, Fonseca Amaral PF, Nele M, Zarur Coelho MA. Factorial design to optimize biosurfactant production by Yarrowia lipolytica. J Biomed Biotechnol. 2010;2010:1–8. https://doi.org/10.1155/2010/821306
  9. Fracchia L, Banat JJ, Cavallo M, Ceresa C, Banat IM. Potential therapeutic applications of microbial surface-active compounds. AIMS Bioeng. 2015;2(3):144–162. https://doi.org/10.3934/bioeng.2015.3.144
  10. Fusconi R, Maria Nascimento Assunção R, de Moura Guimarães R, Rodrigues Filho G, Eduardo da Hora Machado A. Exopolysaccharide produced by Gordonia polyisoprenivorans CCT 7137 in GYM commercial medium and sugarcane molasses alternative medium: FT-IR study and emulsifying activity. Carbohydr Polym. 2010 Jan;79(2):403–408. https://doi.org/10.1016/j.carbpol.2009.08.023
  11. Gharaei-Fathabad E. Biosurfactants in pharmaceutical industry (a mini-review). Am J Drug Discov Dev. 2011 Jan 1;1(1):58–69. https://doi.org/10.3923/ajdd.2011.58.69
  12. Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR. Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci. 2013 Dec;34(12):667–675. https://doi.org/10.1016/j.tips.2013.10.002
  13. Jadhav M, Kagalkar A, Jadhav S, Govindwar S. Isolation, characterization, and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. Eur J Lipid Sci Technol. 2011 Nov; 113(11):1347–1356. https://doi.org/10.1002/ejlt.201100023
  14. Jahan R, Bodratti AM, Tsianou M, Alexandridis P. Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv Colloid Interface Sci. 2020 Jan; 275:102061. https://doi.org/10.1016/j.cis.2019.102061
  15. Jemil N, Hmidet N, Manresa A, Rabanal F, Nasri M. Isolation and characterization of kurstakin and surfactin isoforms produced by Enterobacter cloacae C3 strain. J Mass Spectrom. 2019 Jan;54(1):7–18. https://doi.org/10.1002/jms.4302
  16. Joshi PA, Shekhawat DB. Effect of carbon and nitrogen source on biosurfactant production by biosurfactant producing bacteria isolated from petroleum contaminated site. Adv Appl Sci Res. 2014; 5:159–164.
  17. Khademolhosseini R, Jafari A, Mousavi SM, Hajfarajollah H, Noghabi KA, Manteghian M. Physicochemical characterization and optimization of glycolipid biosurfactant production by a native strain of Pseudomonas aeruginosa HAK01 and its performance evaluation for the MEOR process. RSC Advances. 2019 Mar 11; 9(14):7932–7947. https://doi.org/10.1039/C8RA10087J
  18. Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination. 2012 Jan;285:198–204. https://doi.org/10.1016/j.desal.2011.10.002
  19. Li C, Fu X, Luo F, Huang Q. Effects of maltose on stability and rheological properties of orange oil-in-water emulsion formed by OSA modified starch. Food Hydrocoll. 2013 Jul;32(1):79–86. https://doi.org/10.1016/j.foodhyd.2012.12.004
  20. Luong TM, Ponamoreva ON, Nechaeva IA, Petrikov KV, Delegan YA, Surin AK, Linklater D, Filonov AE. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature. World J Microbiol Biotechnol. 2018 Feb;34(2):20. https://doi.org/10.1007/s11274-017-2401-8
  21. Mandal SM, Barbosa AEAD, Franco OL. Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol Adv. 2013 Mar;31(2):338–345. https://doi.org/10.1016/j.biotechadv.2013.01.004
  22. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999 Jan 01;12(1): 147–179. https://doi.org/10.1128/CMR.12.1.147
  23. Mouafo TH, Mbawala A, Ndjouenkeu R. Effect of different carbon sources on biosurfactants’ production by three strains of Lactobacillus spp. BioMed Res Int. 2018;2018:1–15. https://doi.org/10.1155/2018/5034783
  24. Moya Ramírez I, Tsaousi K, Rudden M, Marchant R, Jurado Alameda E, García Román M, Banat IM. Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresour Technol. 2015 Dec;198:231–236. https://doi.org/10.1016/j.biortech.2015.09.012
  25. Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R. Rhamnolipids – next generation surfactants? J Biotechnol. 2012 Dec;162(4):366–380. https://doi.org/10.1016/j.jbiotec.2012.05.022
  26. Nurfarahin A, Mohamed M, Phang L. Culture medium development for microbial-derived surfactants production – An overview. Molecules. 2018 May 01;23(5):1049. https://doi.org/10.3390/molecules23051049
  27. Nwaguma IV, Chikere CB, Okpokwasili GC. Isolation, characterization, and application of biosurfactant by Klebsiella pneumoniae strain IVN51 isolated from hydrocarbon-polluted soil in Ogoniland, Nigeria. Bioresour Bioprocess. 2016 Dec;3(1):40. https://doi.org/10.1186/s40643-016-0118-4
  28. Onwosi CO, Odibo FJC. Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol. 2012 Mar;28(3):937–942. https://doi.org/10.1007/s11274-011-0891-3
  29. Qazi MA, Malik ZA, Qureshi GD, Hameed A, Ahmed S. Yeast extract as the most preferable substrate for optimized biosurfactant production by rhlB gene positive Pseudomonas putida SOL-10 isolate. J Bioremediat Biodegrad. 2013;4:204.
  30. Ranasalva N, Sunil R, Poovarasan G. Importance of biosurfactant in food industry. IOSR J Agric Vet Sci. 2014;7(5):06–09. https://doi.org/10.9790/2380-07540609
  31. Rane AN, Baikar VV, Ravi Kumar V, Deopurkar RL. Agro-industrial wastes for production of biosurfactant by Bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles. Front Microbiol. 2017 Mar 24;8:492. https://doi.org/10.3389/fmicb.2017.00492
  32. Rufino RD, de Luna JM, de Campos Takaki GM, Sarubbo LA. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron J Biotechnol. 2014 Jan;17(1):34–38. https://doi.org/10.1016/j.ejbt.2013.12.006
  33. Sekhon Randhawa KK, Rahman PKSM. Rhamnolipid biosurfactants – past, present, and future scenario of global market. Front Microbiol. 2014 Sep 02;5:454. https://doi.org/10.3389/fmicb.2014.00454
  34. Sharma D, Saharan BS. Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnol Rep (Amst). 2016 Sep;11:27–35. https://doi.org/10.1016/j.btre.2016.05.001
  35. Sheppard FC, Mason DJ, Bloomfield SF, Gant VA. Flow cytometric analysis of chlorhexidine action. FEMS Microbiol Lett. 1997 Sep;154(2):283–288. https://doi.org/10.1111/j.1574-6968.1997.tb12657.x
  36. Shete AM, Wadhawa G, Banat IM, Chopade BA. Mapping of patents on bioemulsifier and biosurfactant: a review. J Sci Ind Res (India). 2006;65:91–115.
  37. Singh P, Tiwary BN. Isolation and characterization of glycolipid biosurfactant produced by a Pseudomonas otitidis strain isolated from Chirimiri coal mines, India. Bioresour Bioprocess. 2016 Dec; 3(1):42. https://doi.org/10.1186/s40643-016-0119-3
  38. Sobrinho HBS, Luna JM, Rufino RD, Porto ALF, Sarubbo LA. Biosurfactants: classification, properties and environmental applications. In: Govil JN (editor). Recent development in biotechnology, vol.11. Houston (USA): Studium Press LLC; 2014. p. 303–330.
  39. Varjani SJ, Upasani VN. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Bioresour Technol. 2016 Dec;221:510–516. https://doi.org/10.1016/j.biortech.2016.09.080
  40. Walter V, Syldatk C, Hausmann R. Screening concepts for the isolation of biosurfactant producing microorganisms. In: Sen R (editor). Biosurfactants. Advances in Experimental Medicine and Biology, vol. 672. New York (USA): Springer; 2010.
  41. Whittenbury R, Phillips KC, Wilkinson JF. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol. 1970 May 01;61(2):205–218. https://doi.org/10.1099/00221287-61-2-205
  42. Wong-Villarreal A, Reyes-López L, Corzo-González H, Blanco-González C, Yáñez-Ocampo G. Characterization of bacteria isolation of bacteria from Pinyon rhizosphere producing biosurfactant from agro-industrial waste. Pol J Microbiol. 2016 Jun 7;65(2):183–189. https://doi.org/10.5604/17331331.1204478
  43. Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour Technol. 2008 Mar;99(5):1157–1164. https://doi.org/10.1016/j.biortech.2007.02.026
  44. Zhang J, Xue Q, Gao H, Lai H, Wang P. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microb Cell Fact. 2016 Dec;15(1):168. https://doi.org/10.1186/s12934-016-0574-8
  45. Zhang M, Yewe-Siang Lee Shee We M, Wu H. Direct emulsification of crude glycerol and bio-oil without addition of surfactant via ultrasound and mechanical agitation. Fuel. 2018 Sep;227:183–189. https://doi.org/10.1016/j.fuel.2018.04.099
DOI: https://doi.org/10.33073/pjm-2020-030 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 273 - 282
Submitted on: Mar 9, 2020
|
Accepted on: Jun 19, 2020
|
Published on: Aug 14, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 JINDARAT EKPRASERT, SASIWIMON KANAKAI, SULADDA YOSPRASONG, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.