Have a personal or library account? Click to login
Antibacterial Activity and Mode of Action of β-caryophyllene on Bacillus cereus
 Cover

Antibacterial Activity and Mode of Action of β-caryophyllene on Bacillus cereus

Open Access
|Mar 2020

References

  1. Belley A, Neesham-Grenon E, Arhin FF, McKay GA, Parr TR Jr, Moeck G. Assessment by time-kill methodology of the synergistic effects of oritavancin in combination with other antimicrobial agents against Staphylococcus aureus. Antimicrob Agents Chemother. 2008 Oct 01;52(10):3820–3822. https://doi.org/10.1128/AAC.00361-08
  2. Berthold-Pluta A, Pluta A, Garbowska M, Stefańska I. Prevalence and toxicity characterization of Bacillus cereus in food products from Poland. Foods. 2019 Jul 19;8(7):269. https://doi.org/10.3390/foods8070269
  3. CLSI. Performance standards for antimicrobial susceptibility testing. CLSI supplement M100S. Wayne (USA): Clinical and Laboratory Standards Institute; 2016.
  4. Dahham S, Tabana Y, Iqbal M, Ahamed M, Ezzat M, Majid A, Majid A. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 2015 Jun 26;20(7):11808–11829. https://doi.org/10.3390/molecules200711808
  5. Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A. Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci USA. 2008 Jul 01;105(26): 9099–9104. https://doi.org/10.1073/pnas.0803601105
  6. Guimarães AC, Meireles LM, Lemos MF, Guimarães MCC, Endringer DC, Fronza M, Scherer R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 2019 Jul 05;24(13):2471. https://doi.org/10.3390/molecules24132471
  7. Hodgson A. Terpenes in essential oils. VUV Analytics. [Internet]. 2017 [cited 2019 Feb 11]. Available from https://vuvanalytics.com/knowledge-base/better-living-through-flavor-chemistry-part-3-essential-oils-and-their-terpenes/
  8. Kwiatkowski P, Mnichowska-Polanowska M, Pruss A, Masiuk H, Dzięcioł M, Giedrys-Kalemba S, Sienkiewicz M. The effect of fennel essential oil in combination with antibiotics on Staphylococcus aureus strains isolated from carriers. Burns. 2017 Nov;43(7): 1544–1551. https://doi.org/10.1016/j.burns.2017.04.014
  9. Liu G, Song Z, Yang X, Gao Y, Wang C, Sun B. Antibacterial mechanism of bifidocin A, a novel broad-spectrum bacteriocin produced by Bifidobacterium animalis BB04. Food Control. 2016 Apr;62:309–316. https://doi.org/10.1016/j.foodcont.2015.10.033
  10. Low WL, Kenward K, Britland ST, Amin MCIM, Martin C. Essential oils and metal ions as alternative antimicrobial agents: a focus on tea tree oil and silver. Int Wound J. 2017 Apr;14(2): 369–384. https://doi.org/10.1111/iwj.12611
  11. Machado D, Fernandes L, Costa SS, Cannalire R, Manfroni G, Tabarrini O, Couto I, Sabatini S, Viveiros M. Mode of action of the 2-phenylquinoline efflux inhibitor PQQ4R against Escherichia coli. PeerJ. 2017 Apr 26;5:e3168. https://doi.org/10.7717/peerj.3168
  12. Mahizan NA, Yang SK, Moo CL, Song AAL, Chong CM, Chong CW, Abushelaibi A, Lim SHE, Lai KS. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules. 2019 Jul 19;24(14):2631. https://doi.org/10.3390/molecules24142631
  13. Majed R, Faille C, Kallassy M, Gohar M. Bacillus cereus biofilmssame, only different. Front Microbiol. 2016 Jul 07;7:1054. https://doi.org/10.3389/fmicb.2016.01054
  14. Moo CL, Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Lim SHE, Lai KS. Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Curr Drug Discov Technol. 2019 Mar 04;16. https://doi.org/10.2174/1570163816666190304122219
  15. Morsy NFS. Chemical structure, quality indices and bioactivity of essential oil constituents. In: El-Shemy HA, editor. Active ingredients from aromatic and medicinal plants. London (UK): InTech; 2017. p. 175–206.
  16. Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 2013 Nov 25;6(12):1451–1474. https://doi.org/10.3390/ph6121451
  17. Pieri FA, Souza MCC, Vermelho LLR, Vermelho MLR, Perciano PG, Vargas FS, Borges APB, da Veiga-Junior VF, Moreira MAS. Use of β-caryophyllene to combat bacterial dental plaque formation in dogs. BMC Vet Res. 2016 Dec;12(1):216. https://doi.org/10.1186/s12917-016-0842-1
  18. Sankararaman S, Velayuthan S. Bacillus Cereus. Pediatr Rev. 2013 Apr 01;34(4):196–197. https://doi.org/10.1542/pir.34-4-196
  19. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother. 2005 Jun 01;49(6):2474–2478. https://doi.org/10.1128/AAC.49.6.2474-2478.2005
  20. Valdivieso-Ugarte M, Gomez-Llorente C, Plaza-Díaz J, Gil Á. Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systematic review. Nutrients. 2019 Nov 15;11(11): 2786. https://doi.org/10.3390/nu11112786
  21. Viveiros M, Martins M, Couto I. Evaluation of efflux activity of bacteria by a semi-automated fluorometric system. In: Gillespie S. McHugh T, editors. Antibiotic resistance protocols. Totowa (USA): Humana Press; 2010;642:159–172.
  22. Yang SK, Yusoff K, Warren T, Akseer R, Alhosani MS, Abushelaibi A, Lim SHE, Lai KS. Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae. Sci Rep. 2020 Jan 21; 10:819. https://doi.org/10.1038/s41598-019-55601-0
  23. Yang SK, Yap PSX, Krishnan T, Yusoff K, Chan KG, Yap WS, Lai KS, Lim SHE. Mode of action: synergistic interaction of peppermint (Mentha piperita L. Carl) essential oil and meropenem against plasmid-mediated resistant E. coli. Rec Nat Prod. 2018 Jun 30;12(6):582–594. https://doi.org/10.25135/rnp.59.17.12.078
  24. Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Akseer R, Lim SHE, Lai KS. Disruption of KPC-producing Klebsiella pneumoniae membrane via induction of oxidative stress by cinnamon bark (Cinnamomum verum J. Presl) essential oil. PLoS One. 2019 Apr 2;14(4):e0214326. https://doi.org/10.1371/journal.pone.0214326
  25. Yap PSX, Lim SHE, Hu CP, Yiap BC. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine. 2013 Jun;20(8–9): 710–713. https://doi.org/10.1016/j.phymed.2013.02.013
  26. Yap PSX, Yang SK, Lai KS, Lim SHE. Essential oils: The ultimate solution to antimicrobial resistance in Escherichia coli? In: Amidou Samie, editor. Escherichia coli – Recent advances on physiology, pathogenesis and biotechnological applications. London (UK): InTech; 2017. p. 299–313.
  27. Zengin H, Baysal A. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules. 2014 Nov 03;19(11):17773–17798. https://doi.org/10.3390/molecules191117773
DOI: https://doi.org/10.33073/pjm-2020-007 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 49 - 54
Submitted on: Oct 19, 2019
Accepted on: Jan 18, 2020
Published on: Mar 12, 2020
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 CHEW-LI MOO, SHUN-KAI YANG, MOHD-AZURAIDI OSMAN, MOHD HAFIS YUSWAN, JIUN-YAN LOH, WEI-MENG LIM, SWEE-HUA-ERIN LIM, KOK-SONG LAI, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.