Abou-Shanab RAI, van Berkum P, Angle JS. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere. 2007 Jun;68(2):360–367. https://doi.org/10.1016/j.chemosphere.2006.12.051
Anil Kumar S, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett. 2007 Feb 16;29(3):439–445. https://doi.org/10.1007/s10529-006-9256-7
Bargheer D, Nielsen J, Gébel G, Heine M, Salmen SC, Stauber R, Weller H, Heeren J, Nielsen P. The fate of a designed protein corona on nanoparticles in vitro and in vivo. Beilstein J Nanotechnol. 2015 Jan 06;6:36–46. https://doi.org/10.3762/bjnano.6.5
Bundschuh M, Seitz F, Rosenfeldt RR, Schulz R. Effects of nanoparticles in fresh waters: risks, mechanisms and interactions. Freshw Biol. 2016 Dec;61(12):2185–2196. https://doi.org/10.1111/fwb.12701
Chong TM, Yin WF, Mondy S, Grandclément C, Dessaux Y, Chan KG. Heavy-metal resistance of a France vineyard soil bacterium, Pseudomonas mendocina strain S5.2, revealed by whole-genome sequencing. J Bacteriol. 2012 Nov 15;194(22):6366. https://doi.org/10.1128/JB.01702-12
Dar MA, Ingle A, Rai M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine. 2013 Jan;9(1):105–110. https://doi.org/10.1016/j.nano.2012.04.007
del Pino P, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ. Protein corona formation around nanoparticles – from the past to the future. Mater Horiz. 2014;1(3):301–313. https://doi.org/10.1039/C3MH00106G
Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016 Apr;12(3):789–799. https://doi.org/10.1016/j.nano.2015.11.016
EPA. Secondary drinking water standards: guidance for nuisance chemicals [Internet]. Washington, DC (USA): United States Environ mental Protection Agency; 2017 Mar 8 [cited 2019 May 15]. Available from https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals
Galván Márquez I, Ghiyasvand M, Massarsky A, Babu M, Samanfar B, Omidi K, Moon TW, Smith ML, Golshani A. Zinc oxide and silver nanoparticles toxicity in the baker’s yeast, Saccharomyces cerevisiae. PLoS One. 2018 Mar 19;13(3):e0193111. https://doi.org/10.1371/journal.pone.0193111
Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine. 2012 Jan;8(1):37–45. https://doi.org/10.1016/j.nano.2011.05.007
Jo YK, Kim BH, Jung G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 2009 Oct;93(10):1037–1043. https://doi.org/10.1094/PDIS-93-10-1037
Kaiser JP, Roesslein M, Diener L, Wichser A, Nowack B, Wick P. Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media. J Nanobiotechnology. 2017 Dec;15(1):5. https://doi.org/10.1186/s12951-016-0244-3
Kanawaria SK, Sankhla A, Jatav PK, Yadav RS, Verma KS, Velraj P, Kachhwaha S, Kothari SL. Rapid biosynthesis and charac terization of silver nanoparticles: an assessment of antibacterial and antimycotic activity. Appl Phys, A Mater Sci Process. 2018 Apr; 124(4): 320. https://doi.org/10.1007/s00339-018-1701-7
Kędziora A, Krzyżewska E, Dudek B, Bugla-Płoskońska G. [The participation of outer membranes proteins in the bacterial sen si tivity to nanosilver]. Postepy Hig Med Dosw. 2016;70:610–617. https://doi.org/10.5604/17322693.1205005
Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007 Mar;3(1):95–101. https://doi.org/10.1016/j.nano.2006.12.001
Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009 Apr;22(2):235–242. https://doi.org/10.1007/s10534-008-9159-2
Kobiałka N, Mularczyk M, Kosiorowska K, Pilarska K, Łaba W, Piegza M, Robak M. New strains of filamentous fungi isolated from construction materials. EJPAU. 2019;22(1):#02. https://doi.org/10.30825/5.ejpau.169.2019.22.1
Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine. 2010 Aug;6(4):570–574. https://doi.org/10.1016/j.nano.2009.12.002
Koziróg A, Rajkowska K, Otlewska A, Piotrowska M, Kunicka-Styczyńska A, Brycki B, Nowicka-Krawczyk P, Kościelniak M, Gutarowska B. Protection of historical wood against microbial degradation – selection and application of microbiocides. Int J Mol Sci. 2016 Aug 22;17(8):1364. https://doi.org/10.3390/ijms17081364
Koźlecki T, Teterycz H, Sokołowski A, Polowczyk I, Sawiński W, Maliszewska I, Szydło J. Sposób syntezowania nanocząstek srebra. PL Patent deposition 2011; No P395979.
Latgé JP, Mouyna I, Tekaia F, Beauvais A, Debeaupuis JP, Nierman W. Specific molecular features in the organization and bio synthesis of the cell wall of Aspergillus fumigatus. Med Mycol. 2005 Jan;43(s1) Suppl 1:15–22. https://doi.org/10.1080/13693780400029155
Lee S, Jun BH. Silver Nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci. 2019 Feb 17;20(4):865. https://doi.org/10.3390/ijms20040865
Li XZ, Nikaido H, Williams KE. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol. 1997 Oct;179(19):6127–6132. https://doi.org/10.1128/jb.179.19.6127-6132.1997
Martinez-Gutierrez F, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Av-Gay Y. Synthesis, cha rac terization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine. 2010 Oct;6(5):681–688. https://doi.org/10.1016/j.nano.2010.02.001
Milić M, Leitinger G, Pavičić I, Zebić Avdičević M, Dobrović S, Goessler W, Vinković Vrček I. Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol. 2015 Jun;35(6):581–592. https://doi.org/10.1002/jat.3081
Nowicka-Krawczyk P, Żelazna-Wieczorek J, Koźlecki T. Silver nano particles as a control agent against facades coated by aerial algae – A model study of Apatococcus lobatus (green algae). PLoS One. 2017 Aug 14;12(8):e0183276. https://doi.org/10.1371/journal.pone.0183276
Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007 Mar 15;73(6):1712–1720. https://doi.org/10.1128/AEM.02218-06
Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011 Dec;32(36):9810–9817. https://doi.org/10.1016/j.biomaterials.2011.08.085
PN-EN ISO 846. Polska norma. Tworzywa sztuczne. Ocena działania mikroorganizmów [Plastics-Evaluation of the action of the microorganisms, actualization 2019:05]. 2002 Dec.
Pulit J, Banach M, Szczygłowska R, Bryk M. Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochim Pol. 2013;60(4):795–798.
Radhakrishnan VS, Reddy Mudiam MK, Kumar M, Dwivedi SP, Singh SP, Prasad T. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). Int J Nano medicine. 2018 May;13:2647–2663. https://doi.org/10.2147/IJN.S150648
Rahman M, Laurent S, Tawil N, Yahia L, Mahmoudi M. Nanoparticle and protein corona. In: Protein-nanoparticles interactions. The Bio-Nano Interface. Springer Series in Biophysics. Berlin, Heidel berg (Germany): Springer; 2013;15. p. 21–44. https://doi.org/10.1007/978-3-642-37555-2_2
Rai M, Ingle AP, Gaikwad S, Gupta I, Gade A, Silvério da Silva S. Nanotechnology based anti-infectives to fight microbial intrusions. J Appl Microbiol. 2016 Mar;120(3):527–542. https://doi.org/10.1111/jam.13010
Riaz Ahmed KB, Nagy AM, Brown RP, Zhang Q, Malghan SG, Goering PL. Silver nanoparticles: significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol In Vitro. 2017 Feb;38:179–192. https://doi.org/10.1016/j.tiv.2016.10.012
Robak M. Yarrowia lipolytica specific growth rate on acetate medium supplemented with glucose, glycerol or ethanol. Acta Sci Polon Biotechnologia. 2007;6(1):23–31.
Salvadori MR, Nascimento CAO, Corrêa B. Nickel oxide nanopar ticles film produced by dead biomass of filamentous fungus. Sci Rep. 2015 May;4(1):6404. https://doi.org/10.1038/srep06404
Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007 Jun;3(2):168–171. https://doi.org/10.1016/j.nano.2007.02.001
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004 Jul;275(1):177–182. https://doi.org/10.1016/j.jcis.2004.02.012
Song H, Li B, Lin QB, Wu HJ, Chen Y. Migration of silver from nanosilver–polyethylene composite packaging into food simulants. Food Additives & Contaminants: Part A. 2011 Jul 08;28(12):1–5. https://doi.org/10.1080/19440049.2011.603705
Wen R, Hu L, Qu G, Zhou Q, Jiang G. Exposure, tissue biodistribution, and biotransformation of nanosilver. NanoImpact. 2016 Apr;2:18–28. https://doi.org/10.1016/j.impact.2016.06.001
Xu Y, Gao C, Li X, He Y, Zhou L, Pang G, Sun S. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J Ocul Pharmacol Ther. 2013 Mar;29(2):270–274. https://doi.org/10.1089/jop.2012.0155
Yoon KY, Hoon Byeon J, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007 Feb;373(2-3):572–575. https://doi.org/10.1016/j.scitotenv.2006.11.007
Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA. Ultrasmall inorganic nanoparticles: state-of-the-art and perspectives for biomedical appli cations. Nanomedicine. 2016 Aug;12(6):1663–1701. https://doi.org/10.1016/j.nano.2016.02.019
Zhang X-F, Liu Z-G, Shen W. Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and thera peutic approaches. Int J Mol Sci. 2016a;17(9):1534. https://doi.org/10.3390/ijms17091534
Zhang X-F, Shen W, Gurunathan S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Med Sci. 2016b;17:1603. https://doi.org/10.3390/ijmps17101603
Zou J, Hannula M, Misra S, Feng H, Labrador R, Aula AS, Hyttinen J, Pyykkö I. Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection. J Nanobiotechnology. 2015;13(1):5. https://doi.org/10.1186/s12951-015-0065-9