References
- Abdelmohsen, U. R., Bayer, K., & Hentschel, U. (2014). Diversity, abundance and natural products of marine sponge-associated actinomycetes. Natural Product Reports, 31(3), 381–399. https://doi.org/10.1039/C3NP70111E PMID:24496105
- Altug, G., Gurun, S., Cardak, M., Ciftci, P. S. & Kalkan, S. (2012). The occurrence of pathogenic bacteria in some ships' ballast water incoming from various marine regions to the Sea of Marmara, Turkey. Mar. Environ. 81: 35-42. DOI: 10.1016/j.marenvres.2012.08. 005.
- Anonymous. Ministry of Agriculture and Rural Affairs (2020) Communiqué Number 5/1 on Regulation of Commercial Fishery Fishing (Bulletin No: 2020/20) Official newspaper: Republic of Turkey, Presidential Complex
- Asakawa, M. (1970). Histochemical studies of the mucus on the epidermis of eel, Anguilla japonica. Nippon Suisan Gakkaishi, 36, 83–87. https://doi.org/10.2331/suisan.36.83
- Austin, B., & McIntosh, D. (1988). Natural antibacterial compounds on the surface of rainbow trout, Salmo gairdneri Richardson. Journal of Fish Diseases, 11(3), 275–277. https://doi.org/10.1111/j.1095-8649.1988.tb05444.x
- Ben Bacha, A., Daihan, S. K., Moubayed, N. M., & Mejdoub, H. (2013). Purification and characterization of a phospholipase A2-IIA from common stingray (Dasyatis pastinaca) intestine. Indian Journal of Biochemistry & Biophysics, 50, 186–195. https://doi.org/10.1186/1476511X-10-32 PMID:23898481
- Bal, S., & Sanli, N. O. (2020). Evaluation of the effectiveness of antibacterial wall paint to enhance the hygienic conditions of the interiors. J. Fac. Eng. Archit. Gaz., 35(4), 1913–1922. https://doi.org/10.17341/gazimmfd.678683
- Barría, C., Navarro, J., Coll, M., Fernandez-Arcaya, U., & Sáez-Liante, R. (2015). Morphological parameters of abundant and threatened chondrichthyans of the northwestern Mediterranean Sea. Journal of Applied Ichthyology, 31(1), 114–119. https://doi.org/10.1111/jai.12499
- Bragadeeswaran, S., Priyadharshini, S., Prabhu, K., & Rani, S. R. (2011). Antimicrobial and hemolytic activity of fish epidermal mucus Cynoglossus arel and Arius caelatus. Asian Pacific Journal of Tropical Medicine, 4(4), 305–309. https://doi.org/10.1016/S1995-7645(11)60091-6 PMID:21771475
- Çandiroglu, B., & Dogruöz Güngör, N. (2020). The biotechnological potentials of bacteria isolated from Parsik Cave, Turkey. Johnson Matthey Technol Rev., 64, 396–406. https://doi.org/10.1595/205651320X15923194903811
- Cardak, M., & Altug, G. (2014). Species distribution and heavy metal resistance of Enterobacteriaceae members isolated from Istanbul Strait. Fresenius Environmental Bulletin, 23(10A), 2620–2626. https://doi.org/10.30897/ijegeo.704260
- Chau, R., Kalaitzis, J. A., Wood, S. A., & Neilan, B. A. (2013). Diversity and biosynthetic potential of culturable microbes associated with toxic marine animals. Marine Drugs, 11(8), 2695–2712. https://doi.org/10.3390/md11082695 PMID:23917066
- Cho, G. C., Dodds, J., & Santamarina, J. C. (2007). Closure to “Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands” by Gye-Chun Cho, Jake Dodds, and J. Carlos Santamarina. Journal of Geotechnical and Geoenvironmental Engineering, 133(11), 1474–1474. https://doi.org/0.1061/(ASCE)1090- 0241(2006)132:5(591)
- Çiftçi Türetken, P. S., & Altug, G. (2016). Bacterial pollution, activity and heterotrophic diversity of the northern part of the Aegean Sea, Turkey. Environmental Monitoring and Assessment, 188(2), 127. https://doi.org/10.1007/s10661-016-5109-6 PMID:26832724
- Clinical and Laboratory Standards Institute (CLSI). (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Document M7-A7. Wayne, USA.
- Clinical and Laboratory Standards Institute (CLSI). (2016). CLSI Performance standards for antimicrobial susceptibility testing.
- Coello, W. F., & Khan, M. A. (1996). Protection against heavy metal toxicity by mucus and scales in fish. Archives of Environmental Contamination and Toxicology, 30, 319–326. https://doi.org/10.1007/BF00212289 PMID:8854966
- Cole, A. M., Weis, P., & Diamond, G. (1997). Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. The Journal of Biological Chemistry, 272(18), 12008–12013. https://doi.org/10.1074/jbc.272.18.12008 PMID:9115266
- Cortés, E. (1999). Standardized diet compositions and trophic levels of sharks. ICES Journal of Marine Science, 56(5), 707–717. https://doi.org/10.1006/jmsc.1999.0489
- Ellis, A. E. (2001). Innate host defense mechanisms of fish against viruses and bacteria. Developmental and Comparative Immunology, 25(8-9), 827–839. https://doi.org/10.1016/s0145-305x(01)00038-6 PMID:11602198
- Fernandes, J. M., & Smith, V. J. (2002). A novel antimicrobial function for a ribosomal peptide from rainbow trout skin. Biochemical and Biophysical Research Communications, 296(1), 167–171. https://doi.org/10.1016/S0006-291X(02)00837-9 PMID:12147245
- Fouz, B., Devaja, S., Gravningen, K., Barija, J. L., & Tranzo, A. E. (1990). Antibacterial action of the mucus of the turbot. Bulletin of the European Association of Fish Pathologists, 10, 56–59. https://doi.org/10.5539/ijb.v6n2p42
- Fuochi, V., Li Volti, G., Camiolo, G., Tiralongo, F., Giallongo, C., Distefano, A., Petronio Petronio, G., Barbagallo, I., Viola, M., Furneri, P. M., Di Rosa, M., Avola, R., & Tibullo, D. (2017). Antimicrobial and anti-proliferative effects of skin mucus derived from Dasyatis pastinaca (Linnaeus, 1758). Marine Drugs, 15(11), 342. https://doi.org/10.3390/md15110342 PMID:29104260
- Hellio, C., Pons, A. M., Beaupoil, C., Bourgougnon, N., & Gal, Y. L. (2002). Antibacterial, antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus. International Journal of Antimicrobial Agents, 20(3), 214–219. https://doi.org/10.12980/JCLM.2.2014APJTB-2013-0033 PMID:12385701
- Kalidasan, K., Ravi, V., Sahu, S. K., Maheshwaran, M. L., & Kandasamy, K. (2014). Antimicrobial and anticoagulant activities of the spine of stingray Himantura imbricata. Journal of Coastal Life Medicine, 2(2), 89–93. https://doi.org/10.12980/JCLM.2.2014APJTB-2013-0033
- Kalkan, S., & Altug, G. (2015). Bio-indicator bacteria & environmental variables of the coastal zones: The example of the Güllük Bay, Aegean Sea, Turkey. Marine Pollution Bulletin, 95(1), 380–384. https://doi.org/10.1016/j.marpolbul.2015.04.017 PMID:25956440
- Katra, N., Hisar, O., Karatas, S., Turgay, E., & Sarvan, C. (2016). In vitro antimicrobial activities of extracts from ballan wrasse (Labrus bergylta) skin mucus. Mar. Sci. Tech. Bull. 5(1): 13-15. . https://doi.org/10.13140/2.1.4108.8646
- Kaya, N., Arslan Aydogdu, E. Ö., & Kimiran, A. (2021). Isolation and identification of Listeria spp. from white cheese samples presented for consumption in Istanbul. SAUJS, 25(6), 1253–1262. https://doi.org/10.16984/saufenbilder.985810
- Kumari, U., Nigam, A. K., Mitial, S., & Mitial, A. K. (2011). Antibacterial properties of the skin mucus of the freshwater fishes, Rita rita and Channa punctatus. European Review for Medical and Pharmacological Sciences, 15(7), 781–786. https://doi.org/10.1111/j.1365-2761.1988.tb00550 PMID:21780547
- Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. https://doi.org/10.1038/227680a0 PMID:5432063
- Lauth, X., Shike, H., Burns, J. C., Westerman, M. E., Ostland, V. E., Carlberg, J. M., Van Olst, J. C., Nizet, V., Taylor, S. W., Shimizu, C., & Bulet, P. (2002). Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. The Journal of Biological Chemistry, 277(7), 5030–5039. https://doi.org/10.1074/jbc.M109173200 PMID:11739390
- Lemaître, C., Orange, N., Saglio, P., Saint, N., Gagnon, J., & Molle, G. (1996). Characterization and ion channel activities of novel antibacterial proteins from the skin mucosa of carp (Cyprinus carpio). European Journal of Biochemistry, 240(1), 143–149. https://doi.org/10.1111/j.1432-1033.1996 PMID:8797847
- Luer, C. A. (2014). Novel compounds from shark and stingray epidermal mucus with antimicrobial activity against wound infection pathogens. Sarasota, Florida: Mote Marine Laboratory, Inc. (ADA600463)
- Masso-Silva, J. A., & Diamond, G. (2014). Antimicrobial peptides from fish. Pharmaceuticals (Basel, Switzerland), 7(3), 265–310. https://doi.org/10.3390/ph7030265 PMID:24594555
- Meléndez, M. J., Báez, J. C., Serna-Quintero, J. M., Camiñas, J. A., Fernández, I. L., Real, R., & Macías, D. (2017). Historical and ecological drivers of the spatial pattern of Chondrichthyes species richness in the Mediterranean Sea. PLoS One, 12(4), e0175699. https://doi.org/10.1371/journal.pone.0175699 PMID:28406963
- Monteiro-dos-Santos, J., Conceição, K., Seibert, C. S., Marques, E. E., Silva, P. I., Jr., Soares, A. B., Lima, C., & Lopes-Ferreira, M. (2011). Studies on pharmacological properties of mucus and sting venom of Potamotrygon cf. henlei. International Immunopharmacology, 11(9), 1368–1377. https://doi.org/10.1016/j.intimp.2011.03.019 PMID:21481330
- Navia, A. F., Mejía-Falla, P. A., López-García, J., Giraldo, A., & Cruz-Escalona, V. H. (2017). How many trophic roles can elasmobranchs play in a marine tropical network? Marine and Freshwater Research, 68(7), 1342–1353. https://doi.org/10.1071/MF16161
- O’Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations. Government of the United Kingdom., https://doi.org/10.16984/saufenbilder.985810
- Qin, C., Huang, K., & Xu, H. (2002). Isolation and characterization of a novel polysaccharide from the mucus of the loach, Misgurnus anguillicaudatus. Carbohydrate Polymers, 49(3), 367–371. https://doi.org/10.1016/S0144-8617(01)00335-6
- Ritchie, K. B. (2006). Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series, 322, 1–14. https://doi.org/10.3354/meps322001
- Ritchie, K. B., Schwarz, M., Mueller, J., Lapacek, V. A., Merselis, D., Walsh, C. J., & Luer, C. A. (2017). Survey of antibiotic-producing bacteria associated with the epidermal mucus layers of rays and skates. Frontiers in Microbiology, 8, 1050. https://doi.org/10.3389/fmicb.2017.01050 PMID:28725216
- Robinette, D., Wada, S., Arroll, T., Levy, M. G., Miller, W. L., & Noga, E. J. (1998). Antimicrobial activity in the skin of the channel catfish Ictalurus punctatus: Characterization of broad-spectrum histone-like antimicrobial proteins. Cellular and Molecular Life Sciences, 54(5), 467–475. https://doi.org/10.1007/s000180050175 PMID:9645227
- Shen, Y., Zhang, J., Xu, X., Fu, J., & Li, J. (2012). Expression of complement component C7 and involvement in innate immune responses to bacteria in grass carp. Fish & Shellfish Immunology, 33(2), 448–454. https://doi.org/10.1016/j.fsi.2012.05.016 PMID:22617254
- Shike, H., Lauth, X., Westerman, M. E., Ostland, V. E., Carlberg, J. M., Van Olst, J. C., Shimizu, C., Bulet, P., & Burns, J. C. (2002). Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. European Journal of Biochemistry, 269(8), 2232–2237. https://doi.org/10.1046/j.1432-1033.2002.02881.x PMID:11985602
- Tsutsui, S., Yamaguchi, M., Hirasawa, A., Nakamura, O., & Watanabe, T. (2009). Common skate (Raja kenojei) secretes pentraxin into the cutaneous secretion: The first skin mucus lectin in cartilaginous fish. Journal of Biochemistry, 146(2), 295–306. https://doi.org/10.1093/jb/mvp069 PMID:19416957
- Ullal, A. J., Litaker, R. W., & Noga, E. J. (2008). Antimicrobial peptides derived from hemoglobin are expressed in epithelium of channel catfish (Ictalurus punctatus, Rafinesque). Developmental and Comparative Immunology, 32(11), 1301–1312. https://doi.org/10.1016/j.dci.2008.04.005J PMID:18538841
- Vennila, R., Kumar, K. R., Kanchana, S., Arumugam, M., Vijayalakshmi, S., & Balasubramaniam, T. (2011). Preliminary investigation on antimicrobial and proteolytic property of the epidermal mucus secretion of marine stingrays. Asian Pacific Journal of Tropical Biomedicine, 1(2), 239–243. https://doi.org/10.1016/S2221-1691(11)60162-7
- Yap, A. S. J. (1979). Microbiological considerations in shark handling. Food Technology in Australia, 31, 297–300. https://doi.org/10.1111/1758-2229.1253