Have a personal or library account? Click to login
Estimation, Testing, and Prediction Regions of the Fixed and Random Effects by Solving the Henderson’s Mixed Model Equations Cover

Estimation, Testing, and Prediction Regions of the Fixed and Random Effects by Solving the Henderson’s Mixed Model Equations

Open Access
|Dec 2012

References

  1. [1] Alnosaier, W.S. (2007). Kenward-Roger Approximate F Test for Fixed Effects in Mixed Linear Models. Dissertation Thesis submitted to Oregon State University, April 25, 2007. http://ir.library.oregonstate.edu
  2. [2] Arendacká, B. (2007). Fiducial generalized pivots for a variance component vs. an approximate confidence Interval. Measurement Science Review 7 (6), 55 - 63.
  3. [3] Arendacká, B. (2012). Approximate interval for the between group variance under heteroscedasticity. Journal of Statistical Computation & Simulation 82 (2), 209 - 218.10.1080/00949655.2011.606548
  4. [4] Arendacká, B. (2012). A note on fiducial generalized pivots for σ2 A in one-way heteroscedastic ANOVA with random effects. Statistics 46 (4), 489 - 504.
  5. [5] Caliński, T., Kageyama, S. (2008). On the analysis of experiments in affine resolvable designs. Journal of Statistical Planning and Inference 138, 3350 - 3356.10.1016/j.jspi.2007.04.036
  6. [6] Chvosteková, M., Witkovský, V. (2009). Exact likelihood ratio test for the parameters of the linear regression model with normal errors. Measurement Science Review 9 (1), 1 - 8.10.2478/v10048-009-0003-9
  7. [7] Cui, X., Churchill, G.A. (2003). How many mice and how many arrays? Replication of cDNA microarray experiments. In Lin, S.M. and Allred, E.T. (eds), Methods of Microarray DataAnalysis III, New York: Kluwer.
  8. [8] Cui, X., Hwang, J.T.G, Qiu, J., Blades, N.J., Churchill, G.A. (2005). Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 6 (1), 59 - 75.10.1093/biostatistics/kxh01815618528
  9. [9] Cui, X., Affourtit, J., Shockley, K.R., Woo, Y., Churchill, G.A. (2006). Inheritance patterns of transcript levels in F1 hybrid mice. Genetics 174, 627 - 637.10.1534/genetics.106.060251160207716888332
  10. [10] Das, K., Jiang, J., Rao, J.N.K. (2004). Mean squared error of empirical predictor. Annals of Statistics 32, 818 -- 840.10.1214/009053604000000201
  11. [11] Domotor, Z. (2012). Algebraic frameworks for measurement in the natural sciences. Measurement Science Review 12 (6), 213 - 233.10.2478/v10048-012-0032-7
  12. [12] Elston, D.A. (1998). Estimation of denominator degrees of freedom of F-distributions for assessing Wald statistics for fixed-effect factors in unbalanced mixed models. Biometrics 54 (3), 1085 - 1096.10.2307/2533859
  13. [13] Fai, A.H.T., Cornelius, P.L. (1996). Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments. Journal of Statistical Computing and Simulation 54, 363 - 378.
  14. [14] Fonseca, M., Mathew, T., Mexia, J.T., Zmyślony, R. (2007). Tolerance intervals in a two-way nested model with mixed or random effects. Statistics 41 (4), 289 - 300.10.1080/02331880701270648
  15. [15] Gelman, A. (2005). Analysis of variance: Why it is more important than ever. The Annals of Statistics 33 (1), 1 - 31.10.1214/009053604000001048
  16. [16] Giesbrecht, F.G., Burns, J.C. (1985). Two-stage analysis based on a mixed model: Large sample asymptotic theory and smallsample simulation results. Biometrics 41, 477 - 486.10.2307/2530872
  17. [17] Hartley, H.O., Rao, J.N.K. (1967). Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika 54, 93 - 108.10.1093/biomet/54.1-2.93
  18. [18] Hartung, J., Knapp, G., Sinha, B.K. (2008). Statistical Meta-Analysis with Applications, New York: Wiley.10.1002/9780470386347
  19. [19] Harville, D.A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association 72, 320 - 38.10.1080/01621459.1977.10480998
  20. [20] Harville, D.A. (1985). Decomposition of prediction error. Journal of the American Statistical Association 80, 132 - 138.10.1080/01621459.1985.10477152
  21. [21] Harville, D.A., Jeske, D.R. (1992). Mean squared error of estimation or prediction under a general linear model. Journal of the American Statistical Association 87, 724 - 731.10.1080/01621459.1992.10475274
  22. [22] Harville, D.A. (2008). Accounting for the estimation of variances and covariances in prediction under general linear model: An overview. Tatra Mountains Mathematical Publications 39, 1 - 15.
  23. [23] Henderson, C.R. (1953). Estimation of variance and covariance components Biometrics 9 (2), 226 - 252.10.2307/3001853
  24. [24] Herdahl, M. (2008). Linear mixed model for compressor head and flow data with an application. Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), Norway, June 2008. http://ntnu.diva-portal.org.
  25. [25] Jeske, D.R., Harville, D.A., (1988). Prediction-interval procedures and (fixed-effects) confidence-interval procedures for mixed linear models. Communications in Statistics - Theory and Methods 17, 1053 - 1087.10.1080/03610928808829672
  26. [26] Jiang, J. (1999). On unbiasedness of the empirical BLUE and BLUP. Statistical and Probability Letters 41 (1999), 19 - 24.
  27. [27] Kackar, R.N., Harville, D.A. (1981). Unbiasedness of two-stage estimation and prediction procedures for mixed linear models, Communications in Statistics - Theory and Methods 10, 1249 - 1261.10.1080/03610928108828108
  28. [28] Kackar, R.N., Harville, D.A. (1984). Approximations for standard errors of estimators of fixed and random effects in mixed linear models. Journal of the American Statistical Association 79, 853 - 862.
  29. [29] Kenward, M.G., Roger, J.H. (1997). Small sample inference for fixed effects from restricted maximum likelihood, Biometrics 53, 983 - 997.10.2307/2533558
  30. [30] Kenward, M.G., Roger, J.H. (2009). An improved approximation to the precision of fixed effects from restricted maximum likelihood. Computational Statistics and Data Analysis 53 2583 - 2595.10.1016/j.csda.2008.12.013
  31. [31] Krishnamoorthy, K., Mathew, T. (2009). Statistical Tolerance Regions: Theory, Applications, and Computation, New York: Wiley.10.1002/9780470473900
  32. [32] Laird, N.M., Lange, N., Stram, D. (1987). Maximum likelihood computations with repeated measures: Application of the EM algorithm. Journal of the American Statistical Association 82, 97 - 105.10.1080/01621459.1987.10478395
  33. [33] La Motte, L.R. (1973). Quadratic estimation of variance components. Biometrics 29, 311 - 330.10.2307/2529395
  34. [34] Lindstrom, M.J., Bates, D.M. (1988). Newton-Raphson and EM algorithms for linear mixed-effects models for repeated measures data. Journal of the American Statistical Association 83, 1014 - 1022.
  35. [35] Littell, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D., Schabenberger, O. (2006). SAS for Mixed Models, Second Edition, Cary, NC: SAS Institute Inc.
  36. [36] McCulloch, C.E., Searle, S.R. (2001). Generalized, Linear, and Mixed Models, New York: Wiley.10.1002/9780470057339.vag009
  37. [37] McLean, R.A., Sanders, W.L. (1988). Approximating degrees of freedom for standard errors in mixed linear models. In: Proceedings of the Statistical Computing Section, Alexandria, VA: American Statistical Association, 50 - 59.
  38. [38] McLean, R.A., Sanders, W.L., Stroup, W.W. (1991). A unified approach to mixed linear models. The American Statistician 45, 54 - 64.
  39. [39] Patterson, H.D., Thompson, R. (1971). Recovery of interblock information when block sizes are unequal. Biometrika 58, 545 - 554.10.1093/biomet/58.3.545
  40. [40] Pinheiro, J.C., Bates, D.M. (2000): Mixed-Effects Models in Sand S-PLUS. Springer-Verlag, New York.10.1007/978-1-4419-0318-1
  41. [41] Prasad, N.G.N., Rao, J.N.K. (1990). The estimation of the mean squared error of small area estimators. Journal of the American Statistical Association 85, 163 - 171.10.1080/01621459.1990.10475320
  42. [42] Rao, C.R. (1972). Estimation of variance and covariance components in linear models. Journal of the American Statistical Association 67, 112 -- 115.10.1080/01621459.1972.10481212
  43. [43] Rao, C.R., Kleffe, J. (1988). Estimation of Variance Components and Applications. North-Holland Publishing Company, Amsterdam.
  44. [44] Robinson, G.K. (1991). That BLUP is a good thing: The estimation of random effects. Statistical Science 6, 15 - 51.
  45. [45] SAS Institute, Inc. (2012), SAS/STAT 9.2 User’s Guide The MIXED Procedure. Online Help, Cary, NC: SAS Institute.
  46. [46] Satterthwaite, F.E. (1941). Synthesis of variance. Pyschometrika 6, 309 - 316.10.1007/BF02288586
  47. [47] Satterthwaite, F.E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin 2 (6), 110 -114.10.2307/3002019
  48. [48] Savin, A., Wimmer, G., Witkovský, V. (2003). On Kenward- Roger confidence intervals for common mean in interlaboratory trials. Measurement Science Review 3, 53 - 56.
  49. [49] Searle, S.R., Casella, G. McCulloch, C.E. (1992). Variance Components. John Wiley & Sons, New York.10.1002/9780470316856
  50. [50] Schaalje, B.G., McBride, J.B., Fellingham, G.W. (2001). Approximations to distributions of test statistics in complex mixed linear models using SAS Proc MIXED. In: SUGI 26 Proceedings,Statistics, Data Analysis and Data Mining Section, Paper262, 1 - 5.
  51. [51] Schulz, E., Tiemann, L., Witkovský, V., Schmidt, P., Ploner, M. (2012). Gamma oscillations are involved in the sensorimotor transformation of pain. Journal of Neurophysiology 108, 1025 - 1031.10.1152/jn.00186.201222623490
  52. [52] Širková, L.,Witkovský, V. (2001). On testing variance components in unbalanced mixed linear model. Applications of Mathematics 46 (3), 191 - 213.10.1023/A:1013739907119
  53. [53] Štulajter, F. (2002). The MSE of the BLUP in a finite discrete spectrum LRM. Tatra Mountains Mathematical Publications 26, 125 -- 131.
  54. [54] Štulajter, F. (2002). Predictions in Time Series Using Regression Models, Springer-Verlag, New York.10.1007/978-1-4757-3629-8
  55. [55] Tuček, P., Tučková, M., Fišerová, E., Tuček, J., Kubáček, L. (2012). Design of experiment for measurement of Langevin function. Measurement Science Review 12 (4), 121 - 127.10.2478/v10048-012-0019-4
  56. [56] Volaufová J. (2005). Statistical methods in biomedical research and measurement science. Measurement Science Review 5, Section 1, 1 - 10.
  57. [57] Volaufová J., Witkovský, V. (1992). Estimation of variance components in mixed linear models. Applications of Mathematics 37 (2), 139 - 148.10.21136/AM.1992.104497
  58. [58] Volaufová J., Witkovský, V. (1992). Least-squares and minimum MSE estimators of variance components in mixed linear models. Biometrical Journal 33 (8), 923 - 936.
  59. [59] Volaufová J., Witkovský, V. (2012). On exact inference in linear models with two variance-covariance components. TatraMountains Mathematical Publications 51, 173 - 181.10.2478/v10127-012-0017-9
  60. [60] Wolfinger, R.D., Tobias, R.D., Sall, J. (1994). Computing gaussian likelihoods and their derivatives for general linear mixed models. SIAM Journal on Scientific Computing 15 (6), 1294 -1310.10.1137/0915079
  61. [61] Wimmer G., Witkovský, V. (2003). Between group variance component interval estimation for the unbalanced heteroscedastic one-way random effects model. Journal of Statistical Computation and Simulation 73 (5), 333 - 346.10.1080/0094965021000038940
  62. [62] Wimmer G.,Witkovský, V. (2007). Linear comparative calibration with correlated measurements. Kybernetika 43 (4), 443 -452.
  63. [63] Wimmer G., Witkovský, V. (2007). Univariate linear calibration via replicated errors-in-variables model. Journal of Statistical Computation and Simulation 77 (3), 213 - 227.10.1080/10629360600679433
  64. [64] Wimmer G.,Witkovský, V. (2011). Note on a calibration problem: Selected results and extensions of professor Kubáˇcek’s research. Acta Universitatis Palackianae Olomucensis, Facul-tas Rerum Naturalium, Mathematica 50 (2), 123 - 130.
  65. [65] Witkovský, V. (1996). On variance-covariance components estimation in linear models with AR(1). Acta Mathematica UniviversitatisComenianae 65 (1), 129 - 139.
  66. [66] Witkovský, V. (1998). Estimation of variance components with constraints. Journal of Statistical Planning and Inference 69 (1), 81 - 87.10.1016/S0378-3758(97)00127-4
  67. [67] Witkovský, V. (1998). Modified minimax quadratic estimation of variance components. Kybernetika 34 (5), 535 - 543.
  68. [68] Witkovský, V. (2002). MATLAB algorithm mixed.m for solving Henderson’s mixed model equations. Technical Report, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, 2002. http://www.mathworks.com/matlabcentral/fileexchange/200-mixed.
  69. [69] Witkovský, V. (2005). Comparison of some exact and approximate interval estimators for common mean. Measurement ScienceReview 5 (1), 19 - 22.
  70. [70] Witkovský, Savin, A., Wimmer G. (2003). On small sample inference for common mean in heteroscedastic one-way model. Discussiones Mathematicae Probability and Statistics 23 (2), 123 - 145.
  71. [71] Witkovský, V., Wimmer G. (2001). On statistical models for consensus values. Measurement Science Review 1 (1), 33 - 36.
  72. [72] Witkovský, V.,Wimmer G. (2003). Consensus mean and interval estimators for the common mean. Tatra Mountains MathematicalPublications 26 (1), 183 - 194.
  73. [73] Witkovský, V., Wimmer G. (2007). Confidence interval for common mean in interlaboratory comparisons with systematic laboratory biases. Measurement Science Review 7 (6), 64 - 73.
  74. [74] Wu, H., Yang, H., Churchill, G.A. (2012). R/MAANOVA: Anextensive R environment for the analysis of microarray experiments. http://www.bioconductor.org
Language: English
Page range: 234 - 248
Published on: Dec 15, 2012
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2012 Viktor Witkovský, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.