Have a personal or library account? Click to login
Non-Intrusive Device for Real-Time Circulatory System Assessment with Advanced Signal Processing Capabilities Cover

Non-Intrusive Device for Real-Time Circulatory System Assessment with Advanced Signal Processing Capabilities

By: E. Pinheiro,  O. Postolache and  P. Girão  
Open Access
|Dec 2010

References

  1. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability - standards of measurement, physiological interpretation, and clinical use. Circulation, 93 (5), 1043-1065.
  2. Parati, G., Saul, J. P., Rienzo, M. D., Mancia, G. (1995). Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation: a critical appraisal. Hypertension, 25, 1267-1286.10.1161/01.HYP.25.6.1276
  3. Berntson, G., Cacciopo, J., Quigley, K., Fabro, V. (1994). Autonomic space and psychophysiological response. Psychophysiology, 31 (1), 44-61.10.1111/j.1469-8986.1994.tb01024.x
  4. Dawson, S. L., Manktelow, B. N., Robinson, T. G., Panerai, R. B., Potter, J. F. (2000). Which parameters of beat-to-beat blood pressure and variability best predict early outcome after acute ischemic stroke? Stroke, 31, 463-468.10.1161/01.STR.31.2.463
  5. American College of Cardiology Cardiovascular Technology Assessment Committee. (1993). Heart rate variability for risk stratification of life-threatening arrhythmias. J. Am. Coll. Cardiology, 22, 948-950.10.1016/0735-1097(93)90217-O
  6. Postolache, O., Girão, P. S., Postolache, G. (2007). New approach on cardiac autonomic control estimation based on BCG processing. In Canadian Conference on Electrical and Computer Engineering. Vancouver, Canada, IEEE, 876-879.10.1109/CCECE.2007.224
  7. Postolache, O., Postolache, G., Girão, P. (2007). New device for assessment of autonomous nervous system functioning in psychophysiology. In IEEE International Workshop on Medical Measurements and Applications. Warsaw, Poland, IEEE, 1-5.10.1109/MEMEA.2007.4285172
  8. Pinheiro, E. C., Postolache, O. (2008). Heart rate variability virtual sensor application in blood pressure assessment system. In Biomedical Engineering : Proceedings of the 6th IASTED International Conference. Innsbruck, Austria, Acta Press, 79-82.
  9. Muehslteff, J., Espina, J., Alonso, M., Aubert, X., Falck, T. (2008). Wearable body sensor network for continuous context-related pulse arrival time monitoring. In Biomedical Engineering : Proceedings of the 6th IASTED International Conference. Innsbruck, Austria, Acta Press, 378-383.
  10. Geddes, L. A., Voelz, M., James, S., Reiner, D. (1981). Pulse arrival time as a method of obtaining systolic and diastolic blood pressure indirectly. Med. Biol. Eng. Comput., 19, 671-672.10.1007/BF024427877334880
  11. Ma, T., Zhang, Y. T. (2005). A correlation study on the variabilities in pulse transit time, blood pressure, and heart rate recorded simultaneously from healthy subjects. In IEEE EMBS 27th Annual Conference. Shanghai, China, IEEE, 996-999.10.1109/IEMBS.2005.161658517282354
  12. Chen, W., Kobayashi, T., Ichikawa, S., Takeuchi, Y., Togawa, T. (2000). Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med. Biol. Eng. Comput., 38 (5), 569-574.10.1007/BF0234575511094816
  13. Sugo, Y., Tanaka, R., Soma, T., Kasuya, H., Sasaki, T., Sekiguchi, T., Hosaka, H., Ochiai, R. (1999). Comparison of the relationship between blood pressure and pulse wave transit times at different sites. In 1st Joint BMES/EMBS Conference Serving Humanity, Advancing Technology. Atlanta, USA, IEEE, 222.10.1109/IEMBS.1999.802273
  14. Steptoe, A., Smuylan, H., Gribbin, B. (1976). Pulse wave velocity and blood pressure change: calibration and applications. Psychophysiology, 13 (5), 488-493.10.1111/j.1469-8986.1976.tb00866.x
  15. Gribbin, B., Steptoe, A., Sleight, P. (1976). Pulse wave velocity as a measure of blood pressure change. Psychophysiology, 13 (1), 86-90.10.1111/j.1469-8986.1976.tb03344.x
  16. Espina, J., Falck, T., Muehlsteff, J., Aubert, X. (2006). Wireless body sensor network for continuous cuff-less blood pressure monitoring. In 3rd IEEE EMBS International Summer School and Symposium on Medical Devices and Biosensors. Boston, USA, IEEE, 11-15.10.1109/ISSMDBS.2006.360085
  17. Pinheiro, E. C., Postolache, O., Girão, P. (2009). Pulse arrival time and ballistocardiogram application to blood pressure variability estimation. In IEEE International Workshop on Medical Measurement and Applications. Cetraro, Italy, IEEE, 132-135.10.1109/MEMEA.2009.5167970
  18. Kiu, Y., Poon, C., Zhang, Y. (2008). A hydrostatic calibration method for the design of wearable PAT-based blood pressure monitoring devices. In IEEE EMBS 30th Annual Conference. Vancouver, Canada, IEEE, 1308-1310.
  19. Skinner, J., Anchin, J., Weiss, D. (2008). Nonlinear analysis of the heartbeats in public patient ECGs using an automated PD2i algorithm for risk stratification of arrhythmic death. Ther. Clin. Risk Manag., 4 (2), 549-557.10.2147/TCRM.S2521
  20. Yeragani, V. K., Srinivasan, K., Vempati, S., Pohl, R., Balon, R. (1993). Fractal dimension of heart rate time series: an effective measure of autonomic function. J. Appl. Phys., 75 (6), 2429-2438.10.1152/jappl.1993.75.6.2429
  21. Skinner, J., Pratt, C., Vybiral, T. (1993). A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am. Heart J., 125 (3), 731-743.10.1016/0002-8703(93)90165-6
  22. Vybiral, T., Skinner, J. (1993). The point correlation dimension of R-R Intervals predicts sudden cardiac death among high-risk patients. In Computers in Cardiology, London, UK, IEEE, 257-260.10.1109/CIC.1993.378455
  23. Storella, R., Wood, H., Mills, K., Kanters, J., Højgaard, M., Holstein-Rathlou, N. (1998). Approximate entropy and point correlation dimension of heart rate variability in healthy subjects. Integr. Physiol. Behav. Sci., 33 (4), 315-320.10.1007/BF0268869910333974
  24. Yeragani, V., Sobolewski, E., Jampala, V., Kay, J., Yeragani, S., Igel, G. (1998). Fractal dimension and approximate entropy of heart period and heart rate: awake versus sleep differences and methodological issues. Clin. Sci., 95 (3), 295-301.10.1042/CS19970268
  25. Perkiömäki, J., Mäkikallio, T., Huikuri, H. (2005). Fractal and complexity measures of heart rate variability. Clin. Exp. Hypertens., 27 (2-3), 149-158.10.1081/CEH-48742
  26. Richman, J., Moorman, J. (2000). Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol., 278 (6), 2039-2049.10.1152/ajpheart.2000.278.6.H203910843903
  27. Rosso, O., Martin, M., Figliola, A., Keller, K., Plastino, A. (2006). EEG analysis using wavelet-based information tools. J. Neurosci. Methods, 153 (2), 163-182.10.1016/j.jneumeth.2005.10.00916675027
  28. Lunak, D. R., Bryngelson, R. S. (2006). Noninvasive Blood Pressure Monitor Having Automatic High Motion Tolerance. U. S. Patent No. 7,052,465. Washington, D. C.: U. S. Patent and Trademark Office.
  29. Foo, J. Y. A., Lim, C. S. (2006). Pulse transit time as an indirect marker for variations in cardiovascular related reactivity. Technol. Health Care, 14 (2), 97-108.10.3233/THC-2006-14205
  30. Muehlsteff, J., Aubert, X., Schuett, M. (2006). Cuffless estimation of systolic blood pressure for short effort bicycle tests: the prominent role of the pre-ejection period. In IEEE EMBS 28th Annual Conference. New York, USA, IEEE, 5088-5092.10.1109/IEMBS.2006.26027517946673
  31. Payne, R. A., Symeonides, C. N., Webb, D. J., Maxwell, S. R. J. (2006). Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol., 100, 136-141.10.1152/japplphysiol.00657.200516141378
  32. Pinheiro, E. C., Postolache, O., Girão, P. (2010). Theory and developments in an unobtrusive cardiovascular system representation: Ballistocardiography. Open Biomed. Engin. J., 4, 201-216.10.2174/1874120701004010201311173121673836
  33. Schroeder, M. (1991). Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. New York, USA: W. H. Freeman.
  34. Costa, M., Goldberg, A. L., Peng, C. K. (2002). Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett., 89 (6), 021906.10.1103/PhysRevLett.89.06810212190613
  35. Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA, 88, 2297-2301.10.1073/pnas.88.6.22975121811607165
  36. Richman, J. S., Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol., 278 (6), 2039-2049.10.1152/ajpheart.2000.278.6.H2039
  37. Goldberger, A. L., Peng, C. K., Lipsitz, L. A. (2002). What is physiologic complexity and how does it change with aging and disease? Neurobiol. Aging, 23 (1), 23-26.
  38. Lekkala, J., Paajane, M. (1999). EMFi - new electret material for sensors and actuators. In 10th IEEE International Symposium on Electrets. Delphi, Greece, IEEE, 743-746.10.1109/ISE.1999.832151
  39. Strong, P. (1970). Biophysical Measurements. Beaverton, USA: Tektronix.
  40. Pinheiro, E. C., Postolache, O., Girão, P. (2010). Automatic wavelet detrending benefits to the analysis of cardiac signals acquired in a moving wheelchair. In 32nd Annual International Conference of the IEEE EMBS. Buenos Aires, Argentina, IEEE, 602-605.10.1109/IEMBS.2010.562664621096105
Language: English
Page range: 166 - 175
Published on: Dec 21, 2010
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2010 E. Pinheiro, O. Postolache, P. Girão, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.

Volume 10 (2010): Issue 5 (October 2010)