Have a personal or library account? Click to login
Numerical Simulation of Charge Transfer in Shocked Silicon at low Pressure Cover

Numerical Simulation of Charge Transfer in Shocked Silicon at low Pressure

By: B. Martuzans and  Yu. Skryl  
Open Access
|Sep 2008

References

  1. Stepanov, A. V. (1933). Zs. Phys., 81, 560 (in Russian).
  2. Linde, R. K., Murri, W. J., & Doran, D. G. (1966). J. Appl. Phys., 37, 2527.
  3. Reynolds, C. E., & Seay, G. E. (1962). J. Appl. Phys., 33, 2234.
  4. Mineev, V. N., Inanov, A. G., Lisicyn, Yu. V., Novickij, E. Z., & Tunjaev, Yu. N. (1970). JETF, 59, 1091 (in Russian).
  5. Kanel, G. I., & Dremin, A. N. (1973). Doklady AN, 211, 1314 (in Russian).
  6. Mineev, V. N., & Inanov, A. G. (1976). Uspehi FN, 119, 75 (in Russian).10.3367/UFNr.0119.197605c.0075
  7. Allison, F. E. (1965). J. Appl. Phys., 36, 2111.
  8. Zel'dovich, Ya. B. (1967). JETF, 53, 237 (in Russian).
  9. Inanov, A. G., & Lisicyn, Yu. V., Novickij, E. Z. (1968). JETF, 54, 285 (in Russian).
  10. Nesterenko, V. F(1974). Fizika Gorenija i Vzryva, 10, 752 (in Russian).
  11. Migault, A., & Jacguesson, J. (1967). C. R. Ac. Sci., B264, 507.
  12. Mock, M. (1983). Analysis of Mathematical Models of Semiconductor Devices. Dublin: Boole Press.
  13. Polsky, B. (1986). Numerical Modelling of Semiconductor Devices. Riga: Zinatne (in Russian).
  14. Berman, F., Fox, G. & Hey, T. (eds) (2002). Grid Computing - Making the Global Infrastructure a Reality. New-York: John Wiley & Sons, Ltd ISBN: 0-470-85319-0.
  15. Courant, R., & Friedrichs, K. O. (1999). Supersonic Flow and Shock Waves. New York, Heidelberg: Springer.
  16. Nemat-Nasser, S., Okinaka, T. & Nesterenko, V., Liu, M. (1998). Philosophical Magazine, A76, 1151.10.1080/01418619808239981
  17. Wilkins, M. L. (1964). In: Fundamental Methods in Hydrodynamics.3. London: Academic Press.
  18. Samarsky, A. A., & Popov, Yu. P. (1985). Difference Schemes of the Gas Dynamic. Moscow: Nauka (in Russian).
  19. Benson, D. J., & Conley, P. (1999). Modeling Simul. Matter. Sci. Eng., (7), 333.
  20. Slater J. C. (1939) Introduction to Chemical Physics. New York: McGraw-Hill, Chapt. 12-13.
  21. Martuzans, B., Skryl, Yu., & Kuklja, M. M. (2002). Structure of the shock wave front in solids. Latv. J. Phys. Tech. Sci., (3), 40-49.
  22. Zeldovich, Ya. B. & Raizer, Yu. P. (2002). Physics of shock waves and high-temperature hydrodynamic phenomena. New York: Academic Press (eds: Hayes, W. D., & Probstein, R. F.).
  23. Martuzans, B., & Skryl, Yu. (1998). J. Chem. Soc. Faraday Trans., 94, 2411.
  24. Skryl, Yu. (2000). Phys. Chem. Chem. Phys., (2), 2969.
  25. Bonch-Bruevich V. L., Kalashnikov S. G. (1977) Physic of Semiconductors. Moscow: Nauka (in Russian).
  26. Goto T., Sato T, Syono Y. (1982) Jap. J. Appl. Phys. 21(6), L369-L371.
DOI: https://doi.org/10.2478/v10047-008-0018-2 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 33 - 46
Published on: Sep 23, 2008
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2008 B. Martuzans, Yu. Skryl, published by Institute of Physical Energetics
This work is licensed under the Creative Commons License.

Volume 45 (2008): Issue 4 (August 2008)