Have a personal or library account? Click to login
Motion planning and feedback control for a unicycle in a way point following task: The VFO approach Cover

Motion planning and feedback control for a unicycle in a way point following task: The VFO approach

Open Access
|Dec 2009

References

  1. Astolfi, A. (1996). Asymptotic Stabilization of Nonholonomic Systems with Discontinuous Control, Ph.D. thesis, Swiss Federal Institute of Technology, Zurich.
  2. Bhat, S. P. and Bernstein, D. S. (2000). Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization 38(3): 751-766.10.1137/S0363012997321358
  3. de Luca, A., Oriolo, G. and Samson, C. (1998). Feedback control of a nonholonomic car-like robot, in J. P. Laumond (Ed.), Robot Motion Planning and Control, Lecture Notes in Control and Information Sciences, Vol. 229, Springer, Berlin/Heidelberg, pp. 171-253.
  4. Fleury, S., Soueres, P., Laumond, J. and Chatila, R. (1995). Primitives for smoothing mobile robot trajectories, IEEE Transactions on Robotics and Automation 11(3) 441-448.10.1109/70.388788
  5. Kozłowski, K. and Pazderski, D. (2004). Modeling and control of a 4-wheel skid-steering mobile robot, International Journal of Applied Mathematics Computer Science 14(4): 477-496.
  6. Lawrence, D. A., Frew, E. W. and Pisano, W. J. (2008). Lyapunov vector fields for autonomous UAV flight control, AIAA Journal of Guidance, Control, and Dynamics 31(5): 1220-1229.10.2514/1.34896
  7. Madi, M. (2004). Closed-form expressions for the approximation of arclength parameterization for Bezier curves, International Journal of Applied Mathematics Computer Science 14(1): 33-41.
  8. Michałek, M. and Kozłowski, K. (2008). Motion planning and its realization using VFO stabilizer features for a differentially driven robot, in K. Tchoń and C. Zieliński (Eds.), Problemy robotyki, Prace naukowe, Elektronika, Vol. 166, II, Warsaw University of Technology Press, pp. 525-534, (in Polish)
  9. Michałek, M. and Kozłowski, K. (2009). Vector-field-orientation feedback control method for a differentially-driven vehicle, IEEE Transactions on Control Systems Technology, DOI: 10.1109/TCST.2008.2010406, (in print).10.1109/TCST.2008.2010406
  10. Morin, P. and Samson, C. (2003). Practical stabilization of drifless systems on Lie groups: The transverse function approach, IEEE Transactions on Automatic Control 48(9): 1496-1508.10.1109/TAC.2003.816963
  11. Reeds, J. A. and Shepp, L. A. (1990). Optimal paths for a car that goes both forwards and backwards, Pacific Journal of Mathematics 145(2): 367-393.10.2140/pjm.1990.145.367
  12. Samson, C. (1992). Path following and time-varying feedback stabilization of a wheeled mobile robot, Proceedings of the International Conference ICARCV'92, Singapore, pp. 13.1.1-13.1.5.
  13. Sasiadek, J. and Duleba, I. (1995). Local trajectory planner, Proceedings of the AIAA Guidance, Navigation and Control Conference, Baltimore, MD, USA, pp. 1474-1483.
  14. Scheuer, A. and Fraichard, T. (1997). Continuous-curvature path planning for car-like vehicles, Proceedings of the International Conference of Intelligent Robots and Systems, Grenoble, France, pp. 997-1003.
  15. Siegwart, R. and Nourbakhsh, I. R. (2004). Introduction to Autonomous Robots, The MIT Press, Cambridge, MA.
  16. Sordalen, O. J. and de Wit, C. C. (1993). Exponential control law for a mobile robot: extension to path following, IEEE Transactions on Robotics and Automation 9(6): 837-842.10.1109/70.265927
DOI: https://doi.org/10.2478/v10006-009-0042-2 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 533 - 545
Published on: Dec 31, 2009
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 Maciej Michałek, Krzysztof Kozłowski, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 19 (2009): Issue 4 (December 2009)