Have a personal or library account? Click to login
Formalization of Hindsight Indicators and Characteristics for Assessing Foresight of Transport and Passenger Aircraft Cover

Formalization of Hindsight Indicators and Characteristics for Assessing Foresight of Transport and Passenger Aircraft

Open Access
|Dec 2025

References

  1. Future of the airline industry 2035. International Air Transport Association (IATA). https://www.iata.org/policy/Documents/iata-future-airline-industry.pdf
  2. Strategic Research and Innovation Agenda. Towards Disruptive Technologies for New Generation Aircraft by 2035. https://clean-aviation.eu/sites/default/files/2024-09/2024-Clean-Aviation-SRIA.pdf
  3. Nadin M. Foresight-AND-Hindsight. 2020. https://www.researchgate.net/publication/348740441_Foresight-AND-Hindsight
  4. MacKay RB, McKiernan P. The role of hindsight in foresight: refining strategic reasoning. Futures. 2004;36(2):161–179. https://doi.org/10.1016/S0016-3287(03)00147-2
  5. Rey M, Aloise D, Soumis F, Pieugueu R. A data-driven model for safety risk identification from flight data analysis. Transp Eng. 2021;5:l00087. https://doi.org/10.1016/j.treng.2021.100087
  6. de Oliveira R, et al. Safety analysis methods for complex systems in aviation. arXiv preprint. 2022;arXiv:2208.02018. https://arxiv.org/abs/2208.02018
  7. Xu Z, Saleh JH. Machine learning for reliability engineering and safety applications: review of current status and future opportunities. Reliab Eng Syst Saf. 2021;211:107530. https://doi.org/10.1016/j.ress.2021.107530
  8. Le Clainche S, Ferrer E, Gibson S, Cross E, Parente A, Vinuesa R. Improving aircraft performance using machine learning: a review. Aerosp Sci Technol. 2023;138: 108354. https://doi.org/10.1016/j.ast.2023.108354
  9. Smagin DI, Grachev SV, Suchkov MV, et al. Method for predictive analysis of failure and pre-failure conditions of aircraft units. Aerospace Systems. 2023;6:231–248. https://doi.org/10.1007/s42401-022-00178-2
  10. Okoro O, Zaliskyi M, Dmytriiev S. An approach to reliability analysis of aircraft systems for a small dataset. Sci J Silesian Univ Technol Ser Transport. 2023. https://doi.org/10.20858/sjsutst.2023.118.14
  11. Cao K, Zhang Y, Feng J. Failure rate analysis and maintenance plan optimization for civil aircraft parts based on data fusion. Chin J Aeronaut. 2025;38(1). https://doi.org/10.1016/j.cja.2024.08.050
  12. Aydemir H, Zengin U, Durak U. The digital twin paradigm for aircraft – review and outlook. In: AIAA SciTech Forum; 2020 Jan 6-10; Orlando, FL. AIAA paper 2020-0553. https://doi.org/10.2514/6.2020-0553
  13. Lai X, Yang L, He X, Pang Y, Song X, Sun W. Digital twin-based structural health monitoring: an aircraft wing example. J Manuf Syst. 2023;69:76–90. https://doi.org/10.1016/j.jmsy.2023.06.006
  14. Moenck K, Rath JE, Koch J, et al. Digital twins in aircraft production and MRO: challenges and opportunities. CEAS Aeronaut J. 2024;15:1051–1067. https://doi.org/10.1007/s13272-024-00740-y
  15. Zhang X, Jiang Y, Miao J, Li Q. A data-driven analysis method for aircraft flight performance comparison. In: IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT); 2021; Changsha, China. p. 328–331. https://doi.org/10.1109/ICCASIT53235.2021.9633645
  16. Kiracý K, Bakýr M. Using multi-criteria decision-making methods in aircraft selection problems: an application. J Transp Logistics. 2018;3(1):13–24. https://doi.org/10.26650/JTL.2018.03.01.02
  17. Prakash D, et al. Comparative analysis of UAVs: payload capacity and performance. In: Khalid S, Siddiqui N, editors. New Innovations in AI, Aviation, and Air Traffic Technology. Hershey (PA): IGI Global; 2024. p.128–149. https://doi.org/10.4018/979-8-3693-1954-3.ch007
  18. Anipko OB, Kalkamanov SA, Priimak AV. Formuly priorytetiv i Khinsaid-analiz pri variantnykh prorobkakh na etapi kontseptualnoho proektuvannia transportnoho litaka [Priority formulas and hindsight analysis for conceptual design variants of a transport aircraft]. Intehrovani Tekhnolohii ta Enerhozberezhennia. 2020;(2):11–19. (in Ukrainian).
  19. Anipko OB. Ratsionalnye teploobmennye poverkhnosti [Rational heat-exchange surfaces]. Kharkov: KhVU; 1998. 187 p. (in Russian)
  20. Anipko OB, Borisik MD, Busyak YuM. Kontseptualnoe proektirovanie obektov bronetankovoi tekhniki [Conceptual design of armored vehicle systems]. Kharkov: NTU KhPI; 2008. 198 p. (in Russian)
  21. Anipko OB, Bashinskii VG, Loginov VV, Semenov VB. Integratsiya silovoi ustanovki i planera transportnogo samoleta [Integration of powerplant and airframe of a transport aircraft]. Zaporozhe: Motor Sich; 2013. 329 p. (in Russian)
  22. Anipko OB, Loginov VV. Otsenka tekhnicheskogo sovershenstva i rynochnoy privlekatelnosti obekta aviatsionnoy tekhniki po stepeni ratsionalnosti [Assessment of technical perfection and market attractiveness of aviation equipment based on rationality]. Integrirovannye Tekhnologii i Energosberezhenie. 2006;(2): 140–147. (in Russian)
  23. Anipko OB, Priimak AV, Mirgorod YuI, Kotov AB. Integralnyi pokazatel dlya letatelnogo apparata transportnogo naznacheniya [Integral indicator for a transport-purpose aircraft]. Intehrovani Tekhnolohii ta Enerhozberezhennia. 2013;(1): 123–125. (in Ukrainian)
  24. Statisticheskie dannye zarubezhnykh samoletov (po dannym inostrannoi pechati) [Statistical data on foreign aircraft (from foreign publications)]. TsAGI Review No.601. 1981.240 p. (in Russian)
  25. Shirokofyuzelyazhnyi srednemagistralnyi samolet “Fregat Ekojet”. Kontseptsiya programmy [Wide-body medium-range aircraft “Fregat Ecojet”: program concept]. 2012. http://www.frigate-ecojet.ru/sites/default/files/2018-05/FE_Program_Concept -19012012_RU.pdf. (in Russian)
  26. Dowling A, Hynes T. Towards a Silent Aircraft. Royal Aeronautical Society, Hamburg Branch; 2008. https://www.fzt.haw-hamburg.de/pers/Scholz/dglr/hh/text_2008_05_27_SilentAircraft.pdf
  27. Ezrokhi YuA, Kalenskii SM, Morzeeva TA, Khoreva EA. Vibor ratsionalnykh parametrov raspredelennoi silovoi ustanovki dalnemagistralnogo samoleta… [Selection of rational parameters of a distributed powerplant for a long-range aircraft]. Aviatsionnye Dvigateli. 2018;(1):5–12. (in Russian)
  28. International Civil Aviation Organization (ICAO). Annex 16 – Environmental Protection. Vol. II: Aircraft Engine Emissions. 2017. 174 p.
  29. European Commission. Flightpath 2050: Europe’s Vision for Aviation. https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf
  30. Pushylin O, Loginov V. Selection of indicators for assessing hybrid turbo-electric propulsion systems for passenger aircraft. Trans Aerosp Res. 2025;278(1):85–97. https://doi.org/10.2478/tar-2025-0005
  31. Setlak L, Kowalik R, Lusiak T. Practical use of composite materials in military aircraft. Materials. 2021;14(17):4812. https://doi.org/10.3390/ma14174812
  32. Reding DF, Eaton J. Science & Technology Trends 2020–2040. NATO Science & Technology Organization; 2020. https://www.nato.int/nato_static_fl2014/assets/pdf/2020/4/pdf/190422-ST_Tech_Trends_Report_2020-2040.pdf
Language: English
Page range: 156 - 173
Submitted on: Aug 19, 2025
|
Accepted on: Nov 20, 2025
|
Published on: Dec 24, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Oleg Anipko, Andrii Pryimak, Vasyl Loginov, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.