References
- Future of the airline industry 2035. International Air Transport Association (IATA). https://www.iata.org/policy/Documents/iata-future-airline-industry.pdf
- Strategic Research and Innovation Agenda. Towards Disruptive Technologies for New Generation Aircraft by 2035. https://clean-aviation.eu/sites/default/files/2024-09/2024-Clean-Aviation-SRIA.pdf
- Nadin M. Foresight-AND-Hindsight. 2020. https://www.researchgate.net/publication/348740441_Foresight-AND-Hindsight
- MacKay RB, McKiernan P. The role of hindsight in foresight: refining strategic reasoning. Futures. 2004;36(2):161–179. https://doi.org/10.1016/S0016-3287(03)00147-2
- Rey M, Aloise D, Soumis F, Pieugueu R. A data-driven model for safety risk identification from flight data analysis. Transp Eng. 2021;5:l00087. https://doi.org/10.1016/j.treng.2021.100087
- de Oliveira R, et al. Safety analysis methods for complex systems in aviation. arXiv preprint. 2022;arXiv:2208.02018. https://arxiv.org/abs/2208.02018
- Xu Z, Saleh JH. Machine learning for reliability engineering and safety applications: review of current status and future opportunities. Reliab Eng Syst Saf. 2021;211:107530. https://doi.org/10.1016/j.ress.2021.107530
- Le Clainche S, Ferrer E, Gibson S, Cross E, Parente A, Vinuesa R. Improving aircraft performance using machine learning: a review. Aerosp Sci Technol. 2023;138: 108354. https://doi.org/10.1016/j.ast.2023.108354
- Smagin DI, Grachev SV, Suchkov MV, et al. Method for predictive analysis of failure and pre-failure conditions of aircraft units. Aerospace Systems. 2023;6:231–248. https://doi.org/10.1007/s42401-022-00178-2
- Okoro O, Zaliskyi M, Dmytriiev S. An approach to reliability analysis of aircraft systems for a small dataset. Sci J Silesian Univ Technol Ser Transport. 2023. https://doi.org/10.20858/sjsutst.2023.118.14
- Cao K, Zhang Y, Feng J. Failure rate analysis and maintenance plan optimization for civil aircraft parts based on data fusion. Chin J Aeronaut. 2025;38(1). https://doi.org/10.1016/j.cja.2024.08.050
- Aydemir H, Zengin U, Durak U. The digital twin paradigm for aircraft – review and outlook. In: AIAA SciTech Forum; 2020 Jan 6-10; Orlando, FL. AIAA paper 2020-0553. https://doi.org/10.2514/6.2020-0553
- Lai X, Yang L, He X, Pang Y, Song X, Sun W. Digital twin-based structural health monitoring: an aircraft wing example. J Manuf Syst. 2023;69:76–90. https://doi.org/10.1016/j.jmsy.2023.06.006
- Moenck K, Rath JE, Koch J, et al. Digital twins in aircraft production and MRO: challenges and opportunities. CEAS Aeronaut J. 2024;15:1051–1067. https://doi.org/10.1007/s13272-024-00740-y
- Zhang X, Jiang Y, Miao J, Li Q. A data-driven analysis method for aircraft flight performance comparison. In: IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT); 2021; Changsha, China. p. 328–331. https://doi.org/10.1109/ICCASIT53235.2021.9633645
- Kiracý K, Bakýr M. Using multi-criteria decision-making methods in aircraft selection problems: an application. J Transp Logistics. 2018;3(1):13–24. https://doi.org/10.26650/JTL.2018.03.01.02
- Prakash D, et al. Comparative analysis of UAVs: payload capacity and performance. In: Khalid S, Siddiqui N, editors. New Innovations in AI, Aviation, and Air Traffic Technology. Hershey (PA): IGI Global; 2024. p.128–149. https://doi.org/10.4018/979-8-3693-1954-3.ch007
- Anipko OB, Kalkamanov SA, Priimak AV. Formuly priorytetiv i Khinsaid-analiz pri variantnykh prorobkakh na etapi kontseptualnoho proektuvannia transportnoho litaka [Priority formulas and hindsight analysis for conceptual design variants of a transport aircraft]. Intehrovani Tekhnolohii ta Enerhozberezhennia. 2020;(2):11–19. (in Ukrainian).
- Anipko OB. Ratsionalnye teploobmennye poverkhnosti [Rational heat-exchange surfaces]. Kharkov: KhVU; 1998. 187 p. (in Russian)
- Anipko OB, Borisik MD, Busyak YuM. Kontseptualnoe proektirovanie obektov bronetankovoi tekhniki [Conceptual design of armored vehicle systems]. Kharkov: NTU KhPI; 2008. 198 p. (in Russian)
- Anipko OB, Bashinskii VG, Loginov VV, Semenov VB. Integratsiya silovoi ustanovki i planera transportnogo samoleta [Integration of powerplant and airframe of a transport aircraft]. Zaporozhe: Motor Sich; 2013. 329 p. (in Russian)
- Anipko OB, Loginov VV. Otsenka tekhnicheskogo sovershenstva i rynochnoy privlekatelnosti obekta aviatsionnoy tekhniki po stepeni ratsionalnosti [Assessment of technical perfection and market attractiveness of aviation equipment based on rationality]. Integrirovannye Tekhnologii i Energosberezhenie. 2006;(2): 140–147. (in Russian)
- Anipko OB, Priimak AV, Mirgorod YuI, Kotov AB. Integralnyi pokazatel dlya letatelnogo apparata transportnogo naznacheniya [Integral indicator for a transport-purpose aircraft]. Intehrovani Tekhnolohii ta Enerhozberezhennia. 2013;(1): 123–125. (in Ukrainian)
- Statisticheskie dannye zarubezhnykh samoletov (po dannym inostrannoi pechati) [Statistical data on foreign aircraft (from foreign publications)]. TsAGI Review No.601. 1981.240 p. (in Russian)
- Shirokofyuzelyazhnyi srednemagistralnyi samolet “Fregat Ekojet”. Kontseptsiya programmy [Wide-body medium-range aircraft “Fregat Ecojet”: program concept]. 2012. http://www.frigate-ecojet.ru/sites/default/files/2018-05/FE_Program_Concept -19012012_RU.pdf. (in Russian)
- Dowling A, Hynes T. Towards a Silent Aircraft. Royal Aeronautical Society, Hamburg Branch; 2008. https://www.fzt.haw-hamburg.de/pers/Scholz/dglr/hh/text_2008_05_27_SilentAircraft.pdf
- Ezrokhi YuA, Kalenskii SM, Morzeeva TA, Khoreva EA. Vibor ratsionalnykh parametrov raspredelennoi silovoi ustanovki dalnemagistralnogo samoleta… [Selection of rational parameters of a distributed powerplant for a long-range aircraft]. Aviatsionnye Dvigateli. 2018;(1):5–12. (in Russian)
- International Civil Aviation Organization (ICAO). Annex 16 – Environmental Protection. Vol. II: Aircraft Engine Emissions. 2017. 174 p.
- European Commission. Flightpath 2050: Europe’s Vision for Aviation. https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf
- Pushylin O, Loginov V. Selection of indicators for assessing hybrid turbo-electric propulsion systems for passenger aircraft. Trans Aerosp Res. 2025;278(1):85–97. https://doi.org/10.2478/tar-2025-0005
- Setlak L, Kowalik R, Lusiak T. Practical use of composite materials in military aircraft. Materials. 2021;14(17):4812. https://doi.org/10.3390/ma14174812
- Reding DF, Eaton J. Science & Technology Trends 2020–2040. NATO Science & Technology Organization; 2020. https://www.nato.int/nato_static_fl2014/assets/pdf/2020/4/pdf/190422-ST_Tech_Trends_Report_2020-2040.pdf