Have a personal or library account? Click to login
Justification of Performance of the Hybrid Propulsion Systems Architecture for A Transport Airship Cover

Justification of Performance of the Hybrid Propulsion Systems Architecture for A Transport Airship

Open Access
|Dec 2025

References

  1. European Commission. Flightpath 2050 CARE2050. Flightpath 2050, Europe’s Vision for Aviation. https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf. Accessed 2022 Dec 2.
  2. Strategic Research and Innovation Agenda. Towards Disruptive Technologies for New Generation Aircraft by 2035. https://clean-aviation.eu/sites/default/files/2024-09/2024-Clean-Aviation-SRIA.pdf.
  3. Madhwal Y, Avdeeva Z. Planning in aircraft industry based on prediction of air traffic. Procedia Comput Sci. 2017;122:1047–1054.
  4. ICAO. Environmental Report 2025: Skyward Action – Realizing Aviation’s Sustainable Future. Montreal: ICAO; 2025. 474 p.
  5. Liu J, Lu C, Xue L. Investigation of airship aeroelasticity using fluid-structure interaction. J Hydrodyn Ser B. 2008;20(2):164–171.
  6. Zeppelin European Tours (ZET). Semi-rigid airship. https://lynceans.org/wp-content/uploads/2020/12/Zeppelin-ZET.pdf. Accessed 2025 Jul 10.
  7. Lockheed Martin. Hybrid Airships – The Road Not Needed. https://www.lockheedmartin.com/content/dam/lockheed-martin/aero/documents/hybridAirship/HybridAirshipLitho.pdf. Accessed 2025 Jul 10.
  8. Vorogushin VA. Dirizhabel’naya modul’naya transportnaya sistema [Modular transport airship system]. Aviapanorama. 2021;(6):12–21. (in Russian)
  9. Shcherbakov YuV. Teoriya polyota dirizhabley: kratkiy kurs [Theory of Airship Flight: A Short Course]. Moscow: LKI; 2008. 80 p. (in Russian)
  10. Murugaiah M, Theng DF, Khan T, Sebaey TA, Singh B. Hybrid electric powered multi-lobed airship for sustainable aviation. Aerospace. 2022;9:769.
  11. Murugaiah M. Research and advancements in hybrid airships – A review. Prog Aerosp Sci. 2021;127:100741.
  12. Friedrich C, Robertson P. Hybrid-electric propulsion for automotive and aviation applications. CEAS Aeronaut J. 2015;6:279–290.
  13. Gao XZ, Hou ZX, Guo Z, Chen XQ. Reviews of methods to extract and store energy for solar-powered aircraft. Renew Sustain Energy Rev. 2015;44:96–108.
  14. Cestino E. Design of solar high-altitude long-endurance aircraft for multi-payload operations. Aerosp Sci Technol. 2006;10:541–550.
  15. Hartney C. Conceptual design of a model solar-powered unmanned aerial vehicle. In: 50th AIAA Aerospace Sciences Meeting; 2012 Jan 9–12; Nashville, USA. p. 134.
  16. Baroutaji A, Wilberforce T, Ramadan M, Olabi AG. Hydrogen and fuel cell technology in the aviation and aerospace sectors. Renew Sustain Energy Rev. 2019;106:31–40.
  17. Zhang B, Fu H, Zhu W, Yang K, Xu Y. Analysis of energy and thermal performance of high-altitude airships under variable attitude. Aerospace. 2024;11:109.
  18. Liao L, Pasternak I. A review of airship structural research and development. Prog Aerosp Sci. 2009;45(4–5):83–96.
  19. Neal C, Koo TR. Demand for cargo airships: Mode-choice decision making in the freight transport industry. J Air Transp Manag. 2020;83:101741.
  20. Zheng W, Zhou Q, Li Z, Zhang X, Liu Y, Li M. Performance analysis of a novel stratospheric airship concept based on gas–liquid phase change. Appl Therm Eng. 2019;159:113748.
  21. Fundacja Sterowiec. Fundacja Sterowiec i plany przywrócenia regularnych połączeń lotniczych wykonywanych przez sterowce [Steerowec Foundation and plans to restore regular flights operated by airships]. https://dlapilota.pl/wiadomosci/dlapilota/fundacja-sterowiec-i-plany-przywrocenia-regularnych-polaczen-lotniczych-wykonyw. Accessed 2025 Jun.
  22. Ilieva G, Páscoa J, Dumas A, Trancossi M. MAAT – Promising innovative design and green propulsive concept for future airship transport. Aerosp Sci Technol. 2014;35:1–14.
  23. Prentice B, Beilock RE, Phillips AJ, Thomson J. The rebirth of airships. J Transp Res Forum. 2010;44(1).
  24. Stockbridge C, Ceruti A, Marzocca P. Airship research and development in design, structures, dynamics and energy systems. Int J Aeronaut Space Sci. 2012;13(2):170–187.
  25. Ardema MD, Fiaig K. Parametric Study of Modern Airship Productivity. NASA Report N80-28340; 1980. 52 p.
  26. Lyan N, Bayezit I. AI-based control of a novel airfoil-shaped quadrotor hybrid airship. 2024. doi:10.2514/6.2024-0281.
  27. Bagare S. Hybrid airship: More of a faster ship, than a slower aircraft. In: 33rd National Convention of Aerospace Engineers; 2019.
  28. Gangadhar A, Murugaiah M, Rajaram D, Mavris D. Conceptual design and feasibility of winged hybrid airships. Aerospace. 2021;9.
  29. Polívka P, Drahotský I, Průša P. Ecological comparison of airships to other types of transport. Spectrum Eng Manag Sci. 2024;2:223–233.
  30. Lobner P. Modern Airships, Part 1. 2022. https://lynceans.org/wp-content/uploads/2022/03/Part-1_Intro-text-and-tables_R5_8Mar2022-compressed.pdf. Accessed 2025 Jul.
  31. Kirilin AN. Dirizhabli – Dirizhabli [Airships – Airships]. Moscow: MAI-PRINT; 2013. 416 p. (in Russian)
Language: English
Page range: 140 - 155
Submitted on: Aug 19, 2025
|
Accepted on: Oct 9, 2025
|
Published on: Dec 24, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Oleksandr Yelans'ky, Vasyl Loginov, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.