Have a personal or library account? Click to login
Analysis and Determination of Technological Trends of the Development of an Afterburning Chamber of Turbofan Engines Cover

Analysis and Determination of Technological Trends of the Development of an Afterburning Chamber of Turbofan Engines

Open Access
|Dec 2025

References

  1. Mattingly JD, Heiser WH, Pratt DT. Aircraft engine design. 2nd ed. Reston (VA): American Institute of Aeronautics and Astronautics; 2002.
  2. International Civil Aviation Organization. Future of aviation. [cited 2025 Jul 15]. https://www.icao.int/Meetings/FutureOfAviation/Pages/default.aspx
  3. Schmitz O, Kaiser S, Klingels H, et al. Aero engine concepts beyond 2030: Part 3 – Experimental demonstration of technological feasibility. J Eng Gas Turb Power. 2021;142. https://doi.org/10.1115/1.4048994
  4. Wolleswinkel RE, de Vries R, Hoogreef MFM, Vos R. A new perspective on battery-electric aviation, Part I: Reassessment of achievable range (AIAA 2024-1489). In: AIAA SCITECH 2024 Forum. Reston (VA): American Institute of Aeronautics and Astronautics; 2024. https://doi.org/10.2514/6.2024-1489
  5. Soleymani M, Mostafavi V, Hebert M, Kelouwani S, Boulon L. Hydrogen propulsion systems for aircraft: A review on recent advances and ongoing challenges. Int J Hydrogen Energy. 2024;91:137–171. https://doi.org/10.1016/j.ijhydene.2024.10.131
  6. Boyce MP. Gas turbine engineering handbook. 3rd ed. Oxford: Gulf Professional Publishing; 2006.
  7. Hunecke K. Jet engines: Fundamentals of theory, design, and operation. 6th impression. Osceola (WI): Motorbooks International; 2003.
  8. GE Aerospace. F404 engine. [cited 2025 Jul 15]. https://www.geaerospace.com/military-defense/engines/f404
  9. Kuleshov VV. TRDDF RD-33-2S. Moscow: MAI; 1986. (in Russian).
  10. OAO NPO Saturn. AL-31FP: Rukovodstvo po tekhnicheskoy ekspluatatsii [AL-31FP: Technical operation manual]. Rybinsk: OAO NPO Saturn; 2004. (in Russian).
  11. Connors J. The engines of Pratt & Whitney: A technical history. Reston (VA): American Institute of Aeronautics and Astronautics; 2010. https://doi.org/10.2514/4.867293
  12. Pratt & Whitney. F119 engine. [cited 2025 Jul 15]. https://www.prattwhitney.com/en/products/military-engines/f119
  13. Pratt & Whitney. F135 engine. [cited 2025 Jul 15]. https://www.prattwhitney.com/en/products/military-engines/f135
  14. Roskam J. Airplane design. Part VI: Preliminary calculation of aerodynamic, thrust and power characteristics. 2nd ed. Lawrence (KS): Design, Analysis and Research Corporation; 2004.
  15. Li M, Wang Z, Li J. Numerical study on the performance of a new integrated afterburner under a wide range of bypass ratio conditions. Energy. 2024;313:133919. https://doi.org/10.1016/j.energy.2024.133919
  16. Ighodaro O, Aburime E, Erameh A. Off-design modelling of a turbojet engine with operative afterburner. Open J Energy Eff. 2022;11:88–107. https://doi.org/10.4236/ojee.2022.113007
  17. Lin C-X, Holder RJ. Reacting turbulent flow and thermal field in a channel with inclined bluff body flame holders. J Heat Transf. 2010;132(9):091203.
  18. Cuppoletti D, Kastner J, Reed J, Gutmark E. High frequency combustion instabilities with radial V-gutter flameholders (AIAA 2009-1176). In: 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; 2009.
  19. Tudosie A-N. Aircraft turbojet engine with afterburning as controlled object. In: Proc 2024 25th Int Carpathian Control Conf (ICCC). New York: IEEE; 2024. p. 1–6. https://doi.org/10.1109/ICCC62069.2024.10569513
  20. Williams J, Ezunkpe Y. Design of an efficient turbofan engine with afterburners. J Eng Appl Sci Technol. 2023;5(177):2–8. https://doi.org/10.47363/JEAST/2023
  21. Safdar MM, Masud J, Mufti B, Naseer HU, Farooq A, Ullah A. Numerical modeling and analysis of afterburner combustion of a low bypass ratio turbofan engine. In: AIAA Scitech 2020 Forum (AIAA 2020-0628); 2020.
  22. Zhang RC, Bai NJ, Fan WJ, Yan WH, Hao F, Yin CM. Flow field and combustion characteristics of integrated combustion mode using cavity with low flow resistance for gas turbine engines. Energy. 2018;165(A):979–996. https://doi.org/10.1016/j.energy.2018.09.121
  23. Jasinski R. Analysis of particle emissions from a jet engine including conditions of afterburner use. Energies. 2022;15(20):7696. https://doi.org/10.3390/en15207696
  24. Tan Y, Jiang Q, Li F, Wang Y, Cao R, Gu W, et al. Experimental and numerical investigation on the ignition performance of the cavity flame holder in the integrated afterburner. Aerosp Sci Technol. 2024;145:108887. https://doi.org/10.1016/j.ast. 2024.108887
  25. Aygun H, Turan O. Exergetic sustainability off-design analysis of variable-cycle aero-engine in various bypass modes. Energy. 2020;195:117008. https://doi.org/10.1016/j.energy.2020.117008
  26. Miao J, Fan Y, Wu W, Zhao S. Influence of air-entraining intensity on the afterburner ignition, flame-holding and combustion characteristics. Aerosp Sci Technol. 2020;106:106063. https://doi.org/10.1016/j.ast.2020.106063
  27. Li F, Zhao B, Liu X, He L, et al. Application study on plasma ignition in aeroengine strut-cavity-injector integrated afterburner. Plasma Sci Technol. 2021;23:105504. https://doi.org/10.1088/2058-6272/ac183c
  28. Zhang RC, Bai N, Fan WJ, Huang XY, Fan XQ. Influence of flame stabilization and fuel injection modes on the flow and combustion characteristics of a gas turbine combustor with cavity. Energy. 2019;189:116216. https://doi.org/10.1016/j.energy. 2019.116216
  29. Wang Z, Wang H, Sun M-B. Review of cavity-stabilized combustion for scramjet applications. Proc Inst Mech Eng Part G J Aerosp Eng. 2014;228. https://doi.org/10.1177/0954410014521172
  30. Do H, Cappelli MA, Mungal MG. Plasma-assisted cavity flame ignition in supersonic flows. Combust Flame. 2010;157:1783–1794.
  31. Kang SH, Lee YJ, Yang SS, et al. Effects of flame holder configurations on combustion in scramjet engines. J Propuls Power. 2012;28:739–746.
  32. Wang H, Wang Z, Sun M, et al. Numerical study on supersonic mixing and combustion with hydrogen injection upstream of a cavity flameholder. Heat Mass Transf. 2013. https://doi.org/10.1007/s00231-013-1227-726
  33. Boivin P, Dauptain A, Jiménez C, et al. Simulation of a supersonic hydrogen–air autoignition-stabilized flame using reduced chemistry. Combust Flame. 2012;159:1779–1790.
  34. Yang X, Dong X, Liu X, Sun W, Tan C. Construction and stability analysis of STOVL engine performance model. IET Conf Proc 6th Chin Int Turbomach Conf (CITC 2024). 2024. https://doi.org/10.1049/icp.2024.3927
  35. Sönmez MC, Karabacak M, Ozgoren M. Preliminary design and analysis of an afterburner module. Int J Aeronaut Astronaut. 2023;4(2):80–102. https://doi.org/10.55212/ijaa.1391886
  36. Safdar MM, Masud J, Ullah A. Numerical analysis of afterburner characteristics of a low bypass ratio turbofan engine at various flight conditions. AIAA 2020-2248. 2020. https://doi.org/10.2514/6.2020–2248
  37. He A, Zeng Q, Zhang Y, Xie P, Li J, Gao M. A fault diagnosis analysis of afterburner failure of aeroengine based on fault tree. Processes. 2023;11(7):2086. https://doi.org/10.3390/pr11072086
  38. Gunston B. Jane’s all the world’s aircraft: Development & production, 2015–16. London: IHS Global; 2015.
  39. Gunston B. World encyclopedia of aero engines: From the pioneers to the present day. Stroud: Sutton Publishing; 2006.
  40. Crosby F. The world encyclopedia of fighter aircraft: An illustrated history from the early planes of World War I to the supersonic jets of today. London: Anness Publishing; 2020.
  41. Jackson R. Military jet aircraft: 1945 to the present day. London: Amber Books; 2024.
Language: English
Page range: 1 - 27
Submitted on: Aug 19, 2025
|
Accepted on: Oct 10, 2025
|
Published on: Dec 24, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Volodymyr Rublev, Vasyl Loginov, Dmytro Kozel, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.