References
- Setlak L, Kowalik R, Lusiak T. Practical use of composite materials used in military aircraft. Materials [Internet]. 2021;14(17):4812. Available from: https://doi.org/10.3390/ma14174812
- Ley W, Wittmann K, Hallmann W. Handbook of space technology, 1st edn. Chichester: John Wiley & Sons Ltd; 2009.
- Kravchenko S, Panova N, Kuļešovs N, Blumbergs I, Šestakovs V. Analysis of the technical implementation options for launching a carrier for output of micro satellites to LEO from an aircraft platform (latlaunch project). In: Riga Technical University 61st International Scientific Conference, 2020 Oct 15-16; Rīga, Latvia. Rīga: RTU Press; 2020. p. 16–7.
- ASTM. C177-19 standard. Test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus [Internet]. Available from: https://doi.org/10.1520/C0177-19
- EN 12667:2001 standard. Thermal performance of building materials and products – Determination of thermal resistance by means of guarded hot plate and heat flow meter methods – Products of high and medium thermal resistance.
- Mobile test stand PV 1236 [Internet]. Available from: https://www.irimex.ru/services/catalog/armatura/rubric_%20501/rubric_510/product_1651/.
- Mobile space environment testing equipment development of “Metamorphosis” prototype for transportation intermodal traffic [Internet]. Riga Technical University (Leading Partner), “C
ryogenic And Vacuum Systems ” Ltd; 2022. Project 1.1.1.1/18/A/133. Available from: https://www.rtu.lv/en/university/rtu-projects/open?project_number=4127 - SIA “Cryogenic and vacuum systems.” [Internet]. European Space Agency; 2014. Available from: https://www.izm.gov.lv/sites/izm/files/latvian-entries1.pdf
- NASA systems engineering handbook (NASA/SP-2016-6105). Rev 2. Create space independent publishing platform. USA: NASA; 2017.
- Pisacane V. Fundamentals of space systems, 2nd edn. New York: Oxford University Press; 2005.
- Gilmore D. Spacecraft thermal control handbook – volume I: fundamental technologies, 2nd edn. California: The Aerospace Press; 2002.
- Kolaini A, Tsuha W, Fernandez J. Spacecraft vibration testing: benefits and potential issues. Adv Aircr Spacecr Sci [Internet]. 2018;5(2):165–75. Available from: https://doi.org/10.12989/aas.2018.5.2.165.
- European Cooperation for Space Standardization. ECSS-E-ST-10-03C. Space Engineering. Testing. ECSS Secretariat ESA-ESTEC Requirements & Standards Division Noordwijk. The Netherlands: 2012.
- NASA Goddard Space Flight Center. GSFC-STD-7000. General Environmental Verification Standard (GEVS) for GSFC Flight Programs and Projects. Maryland: NASA; 2013.
- International Standard Organization. ISO 17851:2016. Space systems – Space environment simulation for material tests – General principles and criteria. Geneva, Switzerland: ISO; 2016.
- Kravchenko S, Panova N, Cēbere M. METAMORPHOSIS – the space testing facility from ventspils. In: Space Research Review: Dedicated to the 25th anniversary of the Ventspils International Radio Astronomy Centre. Vol.5; 2017 Aug 23-24; Ventspils, Latvia. Ventspils University of Applied Sciences; 2018. p. 98–105.
- International Standard Organization. ISO 16528-1:2007. Boilers and pressure vessels. – Part 1: Performance requirements.
- International Standard Organization. ISO 16528-2:2007. Boilers and pressure vessels — Part 2: Procedures for fulfilling the requirements of ISO 16528-1.
- Volumetric and mass flow of gas [Internet]. Available from: https://www.massflow.ru/info/obemnyy-i-massovyy-rashod-gaza/.
- Chisabas R, Loureiro G, Lino CD. Space thermal and vacuum environment simulation. In: Dekoulis G, editor. Space flight [Internet]. InTech; 2018. Available from: https://doi.org/10.5772/intechopen.73154