Have a personal or library account? Click to login
Curvilinear Approach to Landing Cover

References

  1. Federal Aviation Administration. NextGen priorities joint implementation plan; 2014. Available from: https://www.faa.gov/nextgen/media/ng_priorities.pdf
  2. Voloshenyuk DA. Airplane landing by the curvilinear glide paths in limits of the border trajectories modelling method. Control Syst Comput. 2018 Jan;6(272):65–70. Available from: <a href="https://doi.org/10.15407/usim.2017.06.065" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.15407/usim.2017.06.065</a>
  3. Pavlova S, Voloshenyuk DA. Method of aircraft landing by curvilinear glide paths within the boundary trajectories. Proc National Aviat Univ. 2017 Dec;73(4):36–43. Available from: <a href="https://doi.org/10.18372/2306-1472.73.12169" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.18372/2306-1472.73.12169</a>
  4. Bertsch L, Looye G, Anton E, Schwanke S. Flyover noise measurements of a spiraling noise abatement approach procedure. J Aircr. 2011;48(2):436–48. Available from: <a href="https://doi.org/10.2514/1.C001005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2514/1.C001005</a>
  5. Bhattacharyya RP, Pritchett AR, German BJ. Designing air traffic concepts of operation for thin-haul aviation at small airports. AIAA IEEE Digit Avion Syst Conf Proc. 2017. Available from: <a href="https://doi.org/10.1109/DASC.2017.8102000" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/DASC.2017.8102000</a>
  6. Volovoi V, Fraccone GC, Colón AE, Hedrick M, Kelley R. Agent-based simulation of off-nominal conditions during a spiral descent (NextGen Vehicle NRA). 9th AIAA Aviat Technol Integr Oper (ATIO) Conf Aircr Noise Emiss Reduct Symp (ANERS). 2009. Available from: <a href="https://doi.org/10.2514/6.2009-7046" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2514/6.2009-7046</a>
  7. Kulpiński B. Koncepcja procedury awaryjnej dolotu do lądowania w przypadku utraty mocy zespołu napędowego [Diploma thesis]. Rzeszów: Politechnika Rzeszowska; 2021.
  8. Available from: https://www.nlr.org/news/the-endless-runway
  9. Available from: https://eda.europa.eu/what-we-do/all-activities/activities-search/remotely-piloted-aircraft-systems---rpas
  10. Available from: https://eda.europa.eu/what-we-do/all-activities/activities-search/remotely-piloted-aircraft-systems---rpas
  11. Pieniążek J. Measurement of aircraft approach using airfield image. Measurement. 2019 Jul;141:396-406. Available from: <a href="https://doi.org/10.1016/j.measurement.2019." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.measurement.2019.</a> 03.074
  12. Brukarczyk B, Nowak D, Kot P, Rogalski T, Rzucidło P. Fixed wing aircraft automatic landing with the use of a dedicated ground sign system. Aerospace. 2021;8(6). Available from: <a href="https://doi.org/10.3390/aerospace8060167" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/aerospace8060167</a>
  13. Pieniążek J, Cieciński P. Aircraft landing control system test by simulation. In: Koruba Z, Krzysztofik I, Chatys R, Pawlikowski R, Stefański K, editors. Selected issues of modern aviation technologies. Kielce: Wydawnictwo Politechniki Świętokrzyskiej; 2021. p. 85–100.
  14. Looye G. Helical flight path trajectories for autopilot evaluation. In: Holzapfel F, Theil S, editors. Advances in aerospace guidance, navigation and control. Berlin, Heidelberg: Springer; 2011. p. 79–90. Available from: <a href="https://doi.org/10.1007/978-3-642-19817-5_7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-642-19817-5_7</a>
  15. Kaminer I, Pascoal A, Hallberg E, Silvestre C. Trajectory tracking for autonomous vehicles: An integrated approach to guidance and control. J Guid Control Dyn. 1998;21(1):29–38. Available from: <a href="https://doi.org/10.2514/2.4229" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2514/2.4229</a>
  16. Masłowski P. Longitudinal motion control for flare phase of landing. Trans Inst Aviat. 2011;(217):79–93.
  17. Pieniążek J, Cieciński P. Landing control verification using simulation model. In: 9th EASN International Conference on Innovation in Aviation &amp; Space; 2024 Sep 3; Athens, Greece.
  18. International Civil Aviation Organization. ICAO 8168. Aircraft Operations. Volume I - Flight Procedures: ICAO; 2006. 279 p. Available from: http://www.spilve.lv/library/procedures/Doc%208168%20Volume%20I.pdf
  19. Mikoś P. Krzywoliniowe podejście do lądowania [Diploma thesis]. Rzeszów: Politechnika Rzeszowska; 2021.
  20. Pieniążek J, Cieciński P. Modelowanie ruchu samolotu do syntezy systemów sterowania w fazach startu i lądowania. In: Sibilski K, editor. Mechanika w lotnictwie ML-XVIII 2018 TOM II. Warsaw: Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej; 2018. p. 189–200.
  21. Pieniążek J, Cieciński P. Control in curvilinear approach to landing. In: Aerospace Europe Conference; 2021 Nov 23; Warsaw, Poland.
Language: English
Page range: 1 - 18
Submitted on: Nov 4, 2022
Accepted on: Jan 8, 2024
Published on: Mar 13, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Jacek Pieniążek, Piotr Cieciński, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.