Have a personal or library account? Click to login
Seismic bearing capacity of shallow strip footing embedded in slope resting on two-layered soil Cover

Seismic bearing capacity of shallow strip footing embedded in slope resting on two-layered soil

By: Litan Debnath  
Open Access
|Sep 2021

References

  1. Aote, S. S., Raghuwanshi, M. M., & Malik, L. (2013). A brief review of particle swarm optimization: limitations & future directions. International Journal of Computer Science Engineering (IJCSE), 2(5), 196–200.
  2. Askari, F., and Farzaneh, O. (2003), “Upper-bound solution for Seismic bearing capacity of shallow foundation near slopes”, Geotechniqe 53(8), 697–702.
  3. Baazouzi, M., Benmeddour, D., Mabrouki, A., and Mellas, M. (2016), “2D numerical analysis of shallow foundation rested near slope under inclined loading”, Procedia Engineering, Elsevier, 143, 623–634.
  4. Budhu, M., and Al-Karni, A. (1993), “Seismic bearing capacity of soils”, Geotechnique 43(1): 181–187.
  5. Button, S. J. (1953). “The bearing capacity of footings on two-layer cohesive subsoil.” Proc. 3rd Intl. Conference on Soil Mechanics and Foundation Engrg., 1, Zurich: 332–335.
  6. Castelli, F. and Lentini, V. (2012) Evaluation of the bearing capacity of footings on a slope. Int J Phys Model GeotechEng 12(3):112–118
  7. Chakraborty, D., and Kumar, J., (2013), “Bearing Capacity of Foundations on slopes”, Geomechanics and Geoengineering, 8(4), 274–285.
  8. Chakraborty, D., and Kumar, J., (2014), “Seismic Bearing Capacity of Shallow strip Footing Embedded in slope”, International Journal of Geomechanics, 6: 176–184
  9. Cheng, Y. M., Li, L., and Chi, S. C. (2007). “Performance studies on six heuristic global optimization methods in the location of critical slip surface”. ComputGeotech., 34(6):462–484. DOI:10.1016/j.compgeo.2007.01.004.
  10. Choudhury, D., and Subba Rao, K. S. (2006), “Seismic bearing capacity of foundations on slopes”. Geotechnique, 53(3), 347–361
  11. Choudhury, D., SubhaRao, K. S. (2005), “Seismic uplift capacity of inclined slip anchors”, Can Geotech. J., 42(1), 263–271.
  12. Debnath, L. and Ghosh, S. (2018), “Pseudo-static analysis of shallow strip footingresting on two layered soil”, International Journal of Geomechanics, ASCE, doi:10.1061/(ASCE)GM.1943-5622.0001049.
  13. Dormieux, L., and Pecker, A. (1995). “Seismic bearing capacity of foundations on cohesionless soil”, J. Geotech. Eng., ASCE, 121(3), 300–303
  14. Engelbrecht AP (2007) Computational intelligence: an introduction. Wiley, London
  15. Farzaneh O, Mofidi J, Askari F (2013) Seismic bearing capacity of strip footings near cohesive slopes using lower bound limit analysis. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris, pp 1467–1470
  16. Gbenga, D. E., &Ramlan, E. I. (2016). Understanding the limitations of the particle swarm algorithm for dynamic optimization tasks: A survey towards the singularity of PSO for swarm robotic applications. ACM Computing Surveys (CSUR), 49(1), 8.
  17. Hajihassani, M., Armaghani, J. D. and Kalatehjari, R. (2017). “Applications of Particle Swarm Optimizationin Geotechnical Engineering: A Comprehensive Review”, Geotech. Geol. Eng., Springer, DOI 10.1007/s10706-017-0356-z.
  18. Hossain MS, El-Shafie A (2014) Evolutionary techniques versus swarm intelligence: application in reservoir release optimization. Neural ComputAppl 24(7):1583–1594. doi:10.
  19. IS 1893–1984(Part 3), “Indian Standard Criteria for Earthquake Resistant Design of Structures”, Bureau of Indian Standards, New Delhi.
  20. Kalatehjari, R. (2013). “An improvised three-dimensional slope stability analysis based on limit equilibrium method by using particle swarm optimization”. Dissertation, UniversitiTeknologi Malaysia.
  21. Kennedy, J., and Eberhart, R. (1995). “Particle swarm optimization”, In Proceedings of IEEE international conference on neural networks 4, pp.1942–1948.
  22. Kumar, J. (2003), “Nγ for rough strip footing using the method of characteristics”, Can. Geotech. J., 40(3), 669–674
  23. Kumar, J., and Ghosh, P. (2006). “Seismic bearing capacity for embedded footings on sloping ground.” Geotechnique, 56(2), 133–140.
  24. Kumar, J. and Kumar, N. (2003), “Seismic bearing capacity of rough footings on slopes using limit equilibrium”, Geotechnique, 53(3), 363–369
  25. Kumar, J., and Rao, V. B. K. M. (2002), “Seismic bearing capacity factors for spread foundations”, Geotechnique, 52(2), 79–88
  26. Meyerhof, G. G. (1957), “The ultimate bearing capacity of foundation on slopes”, In Proc. of 4th Int. Conf. on Soil Mech. and Found. Engg., London 1, 384–386
  27. Meyerhof, G. G., and Hanna, A. M. (1978). Ultimate bearing capacity of foundations on layered soils under inclined load. Canadian Geotechnical Journal, 15(4), 565–572.
  28. Michalowski, R. L., and Shi, L. (1995). Bearing capacity of footings over two-layer foundation soils. Journal of Geotechnical Engineering, 121(5), 421–428.
  29. Mononobe, N., and Matsuo, H. (1929), “On the Determination of Earth pressure during Earthquakes”, Proc. of the World Engineering Congress, Tokyo, 9, 179–87
  30. Mononobe, N., and Matsuo, H. (1929). On the determination of earth pressure during earthquakes: Proceedings of the World Engineering Congress.
  31. Okabe, S. (1924). The general theory on earth pressure and seismic stability of retaining wall and dam. Proc. Civil Engrg. Soc., Japan, 10(6), 1277–1323.
  32. Paolucci, R. and Pecker, A. (1997), “Seismic bearing capacity of shallow strip foundations on dry soils”, Soils Found., 37(3), 95–105
  33. Prandtl, L. (1921), “Umber die eindringungkeit plasticizer baustoffe und die festigkeit von schneiden”, Zeitschrift Fur Angewandt-Mathematik Und Mechanik, 1 (1), 15–30 (in German)
  34. Purushothamaraj, P., Ramiah, B. K., and Venkatakrishna, K. N. (1974). “Bearing capacity of strip footings in two-layered cohesive-friction soils.” Can. Geotech. J., 11: 32–45
  35. Rankine, W. J. M. (1857), “On the stability of Loose Earth”, Phil. Tras. Royal Society (London)
  36. Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. ACM SIGGRAPH Comput Gr21(4):25–34
  37. Richards, R., Elms, D. G., and Budhu, M. (1993). “Seismic Bearing Capacity and Settlement of Foundations”, J. Geotech. Eng., ASCE, 119(4): 662–674.
  38. Saran, S., Sud, V. K., and Handa, S. C. (1989), “Bearing capacity of footings adjacent to slopes”, J. Geotech. Eng., 115(4), 553–573
  39. Sarma, S. K. (1999), “Seismic bearing capacity of shallow strip footings adjacent to a slope”, Proc., 2nd Int. Conf. Earthquake Geotechnical Engineering, Lisbon, Portugal, Balkema, Rotterdam, The Netherlands, 309–313.
  40. Sarma, S. K., and lossifelis, I. S. (1990), “Seismic bearing capacity factors of shallow strip footings”, Geotechnique, 402, 265–273.
  41. Sawada, T., Nomachi, S. G., and Chen, W. F. (1994), “Seismic bearing capacity of a mounded foundation near a downhill slope by pseudostatic analysis”, Soils Found., 34(1), 11–17.
  42. Soubra, A. H. (1999), “Upper bound solutions for bearing capacity of foundations”, J. Geotech. Geotech. Geoenviron. Eng., ASCE 125 (1): 59–69.
  43. Terzaghi, K. (1943), “Theoretical Soil Mechanics”, Wiley
  44. Yamamoto, K. (2010), “Seismic bearing capacity of shallow foundations near slopes using the upper-bound method”, Int. J. Geotech. Engg., 4, 255–267.
  45. Zhu, D. Y. (2000), “The least upper-bound solutions for bearing capacity factorNγ”, Soils. Found., 40(1), 123–129.
  46. Jahani, M., Oulapour, M, and Haghighi, A.(2019). “Evaluation of the seismic bearing capacity of shallow foundations located on the two-layered clayey soils.” Iran J SciTechnol Trans Civ Eng. 43(1):49–57.
  47. Xiao Y, et al.(2019). “Undrained bearing capacity of strip footings placed adjacent to two layered slopes.” Int. J. Geomech;19(8). Doi:
  48. Merifield, R. S., S. W. Sloan, and H. S. Yu. (1999). “Rigorous plasticity solutions for the bearing capacity of two-layered clays.” Geotechnique 49 (4): 471–490. https://doi.org/10.1680/geot.1999.49.4.471.
  49. Wu, G., Zhao, H., Zhao, M, and Xiao, Y. (2020). “Undrained seismic bearing capacity of strip footing lying on two-layered slope two-layered slopes.” Computer and Geotechnique 122: https://doi.org/10.1016/j.compgeo.2020.103539.
  50. Vesic, A. S. (1975). “Bearing capacity of shallow foundations.” In Foundation engineering handbook, edited by H. F. Winterkorn and H. Y. Fang, 144–165. New York: Van Nostrand Reinhold.
  51. Kusakabe, O., T. Kimura, and H. Yamaguchi. (1981). “Bearing capacity of slopes under strip loads on the top surfaces.” Soils. Found. 21 (4): 29–40.
  52. Georgiadis, K. (2010). “Undrained bearing capacity of strip footings on slopes.” J. Geotech. Geoenviron. Eng. 136 (5): 677–685.
  53. Narita, K., and H. Yamaguchi. (1990). “Bearing capacity analysis of foundations on slopes by use of log-spiral sliding surfaces.” Soils Found. 30(3): 144–152.
  54. Xiao, Y., Zhao, M., Zhang, R., Zhao, H. and Wu, G. (2019). “Undrained Bearing Capacity of Strip Footings Placed Adjacent to Two-Layered Slopes.” Int. J. Geomech., ASCE, Doi: 10.1061/(ASCE)GM.19435622.0001480.
  55. Cinicioglu, O. and Erkli, A. (2018). “Seismic bearing capacity of surficial foundations on sloping cohesive ground.” Soil Dynamics and Earthquake Engineering, 111: 53–64.
  56. Keshavarz, A., Beygi, M. and Vali, R. (2019). “Undrained seismic bearing capacity of strip footing placed on homogeneous and heterogeneous soil slopes by finite element limit analysis.” Computers and Geotechnics, 113: 103094.
  57. Wu, G., Eeri, M., Zhao, M. and Zhao, H. (2020). “Undrained seismic bearingcapacity of strip footingshorizontally embedded in two-layered slopes.” Earthquake Spectra, DOI: 10.1177/8755293020957332.
DOI: https://doi.org/10.2478/sgem-2021-0021 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 285 - 306
Submitted on: Dec 15, 2020
Accepted on: Jun 20, 2021
Published on: Sep 30, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Litan Debnath, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.