References
- Alshibli A., K., Batiste S. N., Sture S. Strain localization in sand: plane strain versus triaxial compression. J. Geotech. Geoenviron. Eng. ASCE 2003; 129 (6); 483–494. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(483)
- Barreto D, O’Sullivan C. The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions. Granular Matter 2012;14(4); 505–521. https://doi.org/10.1007/s10035-012-0354-z
- Been, K. & Jefferies, M. G. (1985) A state parameter for sands. Geotechnique 1985; 35(2); 99–l 12. https://doi.org/10.1680/geot.1985.35.2.99
- Been, K., Jefferies, M. G. Discussion on a state parameter for sands. Geotechnique 1986; 36(1); 123–132.
- Bishop, A. W. Discussion on Soil Properties and Their Measurement. Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering 1961; III; 92–100.
- Bishop A. W. Roscoe Memorial Conference 1971.
- Bolton M.D. Strength and dilatancy, Geotechnique 1986; 36(1); 65–78. DOI: 10.1680/geot.1986.36.1.65
- Chakraborty T., Salgado R. Dilatancy and Shear Strength of Sand at Low Confining Pressure. Journal of Geotechnical and Geoenviromental Engineering 2010; 136(3); 527–532. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000237
- Cornforth Derek H. Some Experiments on the Influence of Strain Conditions on the Strength of Sand. Geotechnique 1964; 14; 143–167. https://doi.org/10.1680/geot.1964.14.2.143
- Desrues, J., Viggiani, G. Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int. J. Numer. Analyt. Methods Geomech. 2004; 28(4); 279 – 321. DOI: 10.1002/nag.338
- Deusdado N., Antao A. N., daSilva M. V., Guerra N. Application of the Upper and Lower-bound Theorems to Three-dimensional Stability of Slopes. Procedia Engineering, 2006; 143; 674–681. DOI: 10.1016/j.proeng.2016.06.09
- Di Santolo S. A., Evangelista, A., Aversa, S. Upper and lower bound solution for dynamic active earth pressure on cantilever walls, 2012;, Italy: 15 WCEE, Lisbon.
- Drucker DC, Prager W. Soil mechanics and plastic analysis or limit design. Journal of applied Mathematics 1952; 10; 157–165.
- Eekelen H. A. M. Isotropic yield surfaces in three dimensions for use in soil mechanics. International Journal for Numerical and Analytical Methods in Geomechanics 1980; 4(1); 89–101. https://doi.org/10.1002/nag.1610040107
- Georgiadis K., Potts D. M., Zdravkovic L. Modelling the shear strength of soils in the general stress space. Computers and Geotechnics 2004; 31; 357–364. DOI: 10.1016/j.compgeo.2004.05.002
- Houlsby G. T. A general failure criterion for frictional and cohesive materials. Soils and Foundations 1986; 26(2); 97–101.
- Kulhawy, F. H., Mayne, P. W. Manual on Estimating Soil Properties for Foundation Design. Final Report. Project 1493–6, EL-6800, Electric Power Research Institute, Palo Alto, CA 1990.
- Lade, P. V., Duncan J., M., Elasto –plastic stress-strain theory for cohesionless soil. Journal of Geotechnical and Geoenvironmental Engineering 1975; 101; 1037–53.
- Lade, P. V., Duncan J., M., Cubical Triaxial Tests on Cohesionless Soils. Soil Mechanics and Foundation Division 1973; 99; 793–812.
- Lagioia R, Panteghini A. The influence of the plastic potential on plane strain failure, International Journal for Numerical and Analytical Methods in Geomechanics 2014; 38; 844–862. DOI: 10.1002/nag.2236
- Lee K. L. Comparison of plane strain and triaxial tests on sand. Journal of the Soil Mechanics and Foundations Division 1970; Proc. ASCE, SM3; 901–923.
- Leśniewska D., Niedostatkiewicz M., J. Tejchman J. Experimental study on shear localization in granular materials within combined strain and stressfield. Strain; 47; 218–231. https://doi.org/10.1111/j.1475-1305.2012.00838.x
- Li B., Chen L., Gutierrez M. Influence of the intermediate principal stress direction on the mechanical behavior of cohesionless soils using the discrete element method. Computers and Geotechnics 2017; 86; 52–66. DOI: 10.1016/j.compgeo.2017.01.004
- Li Y., Yang Y., Yu H.-S., Roberts G. Effect of sample reconstitution methods on the behaviors of granular materials under shearing. Journal of Testing and Evaluation 2018; 46; 20170126. doi:10.1520/JTE20170126. https://doi.org/10.1520/JTE20170126
- Liu M., Gao Y., Liu H. A nonlinear Drucker-Prager and Matsuoka-Nakai unfied failure criterion for geomaterials with separated invariants. International Journal of Rock Mechanics & Mining Sciences 2012; 50; 1–10. https://doi.org/10.1016/j.ijrmms.2012.01.002
- Matsuoka H., Nakai T. Stress-deformation and strength characteristics of soil under three different principal stresses. Proc. Of Japan Society of Civil Engineers 1974; 232; 59–70. https://doi.org/10.2208/jscej1969.1974.232_59
- Matsuoka H., Nakai T. Relationship among Tresca, Mises, Mohr-Coulomb and Matsuoka-Nakai failure criteria. Soils and Foundations 1985; 25(4); 123–128. https://doi.org/10.3208/sandf1972.25.4_123
- Mitchell J. K., Soga K. Fundamentals of Soil Behaviour 2005; John Wiley & Sons, INC.
- Ochiai H, Lade P. V. Three-dimensional behaviour of sand with anisotropic fabric. Journal of Geotechnical Engineering 1983; 109(10); 1313–28. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313)
- Rowe P. W. The relationship between the shear strength of sands in triaxial compression, plane strain and direct shear. Geotechnique 1969; 19(1); 75–86.
- Sadrekarimi A., Olson S. M. Critical state friction angle of sands. Geotechnique 2011, 61(9); 771–783. https://doi.org/10.1680/geot.9.P.090
- Sarkar D., Goudarzy M., Konig D. An interpretation of the influence of particle shape on the mechanical behaviour of granular material. Granular Matter 2019; 21(53); 1–24. DOI: 10.1007/s10035-019-0909-3
- Schanz T., Vermeer P. A. Angles of friction and dilatancy of sand. Geotechnique 1996; 46(1); 145–151. https://doi.org/10.1680/geot.1996.46.1.145
- Shao, S., Shao, S.J., Zhang, Y. and Chen, C.L. Novel Soil Strength Criterion Compared with Conventional Criteria. Geomaterials 2017; 7; 25–39. http://dx.doi.org/10.4236/gm.2017.71003
- Sławińska J. The Mohr-Coulomb friction angle of granular soils under different stress conditions. Acta Sci. Pol. Architectura 2018, 17 (4); 51–60; DOI: 10.22630/ASPA.2018.17.4.40
- Tatsuoka F., Sakamoto M., Kawamura T, Fukushima S. Strength and Deformation Characteristics of Sand in Plane Strain Compression at Extremely Low Pressures. Soils and Foundations 1986; 26(1); 65–84. https://doi.org/10.3208/sandf1972.26.65
- Wanatowski D., Chu J. Static liquefaction of sand in plane strain. Canadian Geotechnical Journal 2007; 44(3); 299–313. DOI: 10.1139/t06-078
- Wanatowski D., Chu J., Loke W. L. Drained instability of sand in plane strain. Canadian Geotechnical Journal 2010; 47(4); 400–412. DOI: 10.1139/T09-111
- Vikash G., Prashant A. Calibration of 3D Failure Criteria for Soils Using Plane Strain Shear Strength Data. Soil Behavior and Geo-Micromechanics. GeoShanghai 2010 International Conference. 86–91.
- Yamamuro, J. A., Lade, P. V. (1996). Drained sand behavior in axisymmetric tests at high pressures. Journal of Geotechnical Engineering ASCE 1996; 122(2); 109–119. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(109)
- Yang Z. X., Jardine R. J., Zhu B. T., Foray P., Tshuha C. H. C. Sand grain crushing and interface shearing during displacement pile installation in sand. Geotechnique 2010; 60(6); 469–782. https://doi.org/10.1680/geot.2010.60.6.469