Chereches, M., Chereches, N. C., Hudisteanu, S. (2015). Numerical modeling of solar radiation inside ventilated double-skin facades. International journal of heat and technology vol. 33, No.4, p. 246–254.
Chereches M., Chereches N. C., Hudisteanu S. (2014) The influence of different flow velocities on the heat transfer inside a ventilated façade. Revista Romana de Inginerie Civila, Volumul 5, Numeral 1.
Chui E.H., Raithby G.D. (1993). Computation of radiant heat transfer on a non-orthogonal mesh using the finite-volume method. Numerical Heat Transfer, Part B 23, p. 269–288.
Cirillo L., Di Ronza D., Fardella V., Manca O., Nardini S. (2015). Numerical and experimental investigations on a solar chimney integrated in a building façade. International Journal of Heat and Technology 33(4), p. 246–254. doi: <a href="https://doi.org/10.18280/ijht.330433" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.18280/ijht.330433</a>
Gagliano A., Nocera F., Aneli S. (2016) Thermodynamic analysis of ventilated facades under different wind conditions in summer period. Energy and Buildings 122, p. 131–139.
González M., Blanco E., Río J.L., Pistono J., San Juan C. (2008). Numerical study on thermal and fluid dynamic behaviour of an open-joint ventilated facade. PLEA 2008 – 25th Conference on Passive and Low Energy Architecture, 22–24 October, Dublin, Ireland.
Griffith, B. (2006). A model for naturally ventilated cavities on the exteriors of opaque building envelopes. Presented at Simbuild 2006 Conference, Cambridge-Massachusetts, USA.
Information from the web site: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview#Final_energy_consumption (date of issue 17-02-2020).
Ibañez-Puy M., Vidaurre-Arbizu M., Sacristán-Fernández J. A., Martín-Gómez, C. (2017). Opaque Ventilated Façades: Thermal and energy performance review. Renewable and Sustainable Energy Reviews, Volume 79, p. 180–191. doi: <a href="https://doi.org/10.1016/j.rser.2017.05.059." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.rser.2017.05.059.</a>
Mahdavinejad M., Mohammadi S. (2018). Ecological analysis of natural ventilated facade system and its performance in Tehran’s climate. Ukrainian Journal of Ecology, 8(1), p. 273–281. doi: <a href="https://doi.org/10.15421/2018_212" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15421/2018_212</a>
Naboni E. (2007). Ventilated opaque walls - A performance simulation method and assessment of simulated performance. Seminar Notes at Lawrence Berkeley National Laboratory Environmental Energy Technologies Division Berkeley, May 28, California, USA.
Sanjuan C., Suárez M. J., González M., Pistono J., Blanco E. (2011). Energy performance of an open-joint ventilated facade compared with a conventional sealed cavity façade. Solar Energy 85, p. 1851–1863. doi: <a href="https://doi.org/10.1016/j.solener.2011.04.028." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.solener.2011.04.028.</a>
Schabowicz K. (2018). Elewacje wentylowane Technologia Produkcji i metody badania płyt włóknisto-cementowych. Wrocław, Oficyna Wydawnicza Politechniki Wrocławskiej.
Suárez M. J., Sanjuan C., Gutiérrez A. J., Pistono J., Blanco E. (2012). Energy evaluation of an horizontal open joint ventilated façade. Applied Thermal Engineering 37. p. 302–313
Stazi F., Ulpiani G., Pergolini M., Magni D., Di Perna C. (2018). Experimental Comparison Between Three Types of Opaque Ventilated Facades. The Open Construction and Building Technology Journal 12, p. 296–308. doi: <a href="https://doi.org/10.2174/1874836801812010296." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2174/1874836801812010296.</a>