Have a personal or library account? Click to login
Supercritical CO2 Extraction of Wine and Beer Yeast Residues for Sustainable Bioproduct Recovery Cover

Supercritical CO2 Extraction of Wine and Beer Yeast Residues for Sustainable Bioproduct Recovery

Open Access
|Sep 2024

References

  1. Maicas S. The Role of Yeasts in Fermentation Processes. <em>Microorganisms</em> 2020:8(8):1–8. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/microorganisms8081142" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/microorganisms8081142</a>">https://doi.org/10.3390/microorganisms8081142</ext-link>
  2. Matraxia M., <em>et al.</em> Non-conventional yeasts from fermented honey by-products: Focus on <em>Hanseniaspora uvarum</em> strains for craft beer production. <em>Food Microbiol</em>ogy 2021:99:103806. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.fm.2021.103806" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fm.2021.103806</a>">https://doi.org/10.1016/j.fm.2021.103806</ext-link>
  3. Singh Nee Nigam P., Pandey A. Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues. <em>Biotechnology for Agro-Industrial Residues Utilisation</em> 2009:1–466. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-1-4020-9942-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-1-4020-9942-7</a>">https://doi.org/10.1007/978-1-4020-9942-7</ext-link>
  4. Kerby C., Vriesekoop F. An Overview of the Utilisation of Brewery By-Products as Generated by British Craft Breweries. <em>Beverages</em> 2017:3(2):24. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/beverages3020024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/beverages3020024</a>">https://doi.org/10.3390/beverages3020024</ext-link>
  5. Ferreira I. M. P. L. V. O., Pinho O., Vieira E., Tavarela J. G. Brewer’s Saccharomyces yeast biomass: characteristics and potential applications. <em>Trends in Food Science &amp; Technology</em> 2010:21(2):77–84. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.tifs.2009.10.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tifs.2009.10.008</a>">https://doi.org/10.1016/j.tifs.2009.10.008</ext-link>
  6. Marson G. V., de Castro R. J. S., Belleville M. P., Hubinger M. D. Spent brewer’s yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications. <em>World Journal of Microbiology and Biotechnology</em> 2020:36:(7):1–22. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11274-020-02866-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11274-020-02866-7</a>">https://doi.org/10.1007/s11274-020-02866-7</ext-link>
  7. Hejna A. More than just a beer—the potential applications of by-products from beer manufacturing in polymer technology. <em>Emergent Materials</em> 2022:5(3):765–783. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s42247-021-00304-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s42247-021-00304-4</a>">https://doi.org/10.1007/s42247-021-00304-4</ext-link>
  8. Capece A., Romaniello R., Siesto G., Romano P. Conventional and Non-Conventional Yeasts in Beer Production. <em>Fermentation</em> 2018:4(2):38. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/fermentation4020038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/fermentation4020038</a>">https://doi.org/10.3390/fermentation4020038</ext-link>
  9. Kokkinomagoulos E., Kandylis P., Sustainable Exploitation of By-Products of Vitivinicultural Origin in Winemaking. <em>Proceedings</em> 2020:67(1):5. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ASEC2020-07521" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ASEC2020-07521</a>">https://doi.org/10.3390/ASEC2020-07521</ext-link>
  10. Romano P., Paraggio M., Turbanti L., Stability in by-product formation as a strain selection tool of <em>Saccharomyces cerevisiae</em> wine yeasts. <em>Journal of Applied Microbiology</em> 1998:84:3:336–341. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1046/j.1365-2672.1998.00345.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1046/j.1365-2672.1998.00345.x</a>">https://doi.org/10.1046/j.1365-2672.1998.00345.x</ext-link>
  11. Varelas V., Tataridis P., Liouni M., Nerantzis E. T. Valorization of Winery Spent Yeast Waste Biomass as a New Source for the Production of β-Glucan. <em>Waste and Biomass Valorization</em> 2016:7(4):807–817. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s12649-016-9530-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12649-016-9530-4</a>">https://doi.org/10.1007/s12649-016-9530-4</ext-link>
  12. Baptista S. L., Romaní A., Cunha J. T., Domingues L., Multi-feedstock biorefinery concept: Valorization of winery wastes by engineered yeast. <em>Journal of Environmental Management</em> 2023:326:116623. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jenvman.2022.116623" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jenvman.2022.116623</a>">https://doi.org/10.1016/j.jenvman.2022.116623</ext-link>
  13. Remize F., Roustan J. L., Sablayrolles J. M., Barre P., Dequin S., Glycerol Overproduction by Engineered Saccharomyces cerevisiae Wine Yeast Strains Leads to Substantial Changes in By-Product Formation and to a Stimulation of Fermentation Rate in Stationary Phase. <em>Applied and Environmental Microbiology</em> 1999:65(1):143–149. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1128/AEM.65.1.143-149.1999" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AEM.65.1.143-149.1999</a>">https://doi.org/10.1128/AEM.65.1.143-149.1999</ext-link>
  14. Oliveira A. S., Ferreira C., Pereira J. O., Pintado M. E., Carvalho A. P., Valorisation of protein-rich extracts from spent brewer’s yeast (Saccharomyces cerevisiae): an overview. <em>Biomass Conversion and Biorefinery</em> 2022:1–23. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13399-022-02636-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13399-022-02636-5</a>">https://doi.org/10.1007/s13399-022-02636-5</ext-link>
  15. Srinivas K., King J. W., Monrad J. K., Howard L. R., Hansen C. M., Optimization of Subcritical Fluid Extraction of Bioactive Compounds Using Hansen Solubility Parameters. <em>Journal of Food Science</em> 2009:74(6):E342–E354. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1750-3841.2009.01251.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1750-3841.2009.01251.x</a>">https://doi.org/10.1111/j.1750-3841.2009.01251.x</ext-link>
  16. Casquete R., Benito M. J., Martín A., Martínez A., Influence of different extraction methods on the compound profiles and functional properties of extracts from solid by-products of the wine industry. <em>LWT- Food Science and Technology</em> 2022:170(1):114097. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.lwt.2022.114097" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.lwt.2022.114097</a>">https://doi.org/10.1016/j.lwt.2022.114097</ext-link>
  17. Sancho-Galan P., Amores-Arrocha A., Jimenez-Cantizano A., Palacios V. Physicochemical and Nutritional Characterization of Winemaking Lees: A New Food Ingredient. <em>Agronomy</em> 2020:10(7):996. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/agronomy10070996" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/agronomy10070996</a>">https://doi.org/10.3390/agronomy10070996</ext-link>
  18. Valero E., Millan C., Ortega J. M., Mauricio J. C. Concentration of amino acids in wine after the end of fermentation by <em>Saccharomyces cerevisiae</em> strains. <em>Journal of the Science of Food and Agriculture</em> 2003:83(8):830–835. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/jsfa.1417" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jsfa.1417</a>">https://doi.org/10.1002/jsfa.1417</ext-link>
  19. Prusova B., Humaj J., Sochor J., Baron M. Formation, Losses, Preservation and Recovery of Aroma Compounds in the Winemaking Process. <em>Fermentation</em> 2022:8(3):93. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/fermentation8030093" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/fermentation8030093</a>">https://doi.org/10.3390/fermentation8030093</ext-link>
  20. Duarte S. H., dos Santos P., Michelon M., de P. Oliveira S. M., Martínez J., Maugeri F. Recovery of yeast lipids using different cell disruption techniques and supercritical CO<sub>2</sub> extraction. <em>Biochemical Engineering Journal</em> 2017:125:230–237. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bej.2017.06.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bej.2017.06.014</a>">https://doi.org/10.1016/j.bej.2017.06.014</ext-link>
  21. Hegel P. E., Camy S., Destrac P., Condoret J. S. Influence of pretreatments for extraction of lipids from yeast by using supercritical carbon dioxide and ethanol as cosolvent. 2011:58(1):68–78. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.supflu.2011.04.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.supflu.2011.04.005</a>">https://doi.org/10.1016/j.supflu.2011.04.005</ext-link>
  22. Kruk M., Varmanen P., Edelmann M., Chamlagain B., Trząskowska M. Food by-product valorisation in nutrients through spent brewer’s yeast bioprocessing with <em>Propionibacterium freudenreichii. Journal of Cleaner Production</em> 2020:434:140102. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jclepro.2023.140102" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jclepro.2023.140102</a>">https://doi.org/10.1016/j.jclepro.2023.140102</ext-link>
  23. Tulej W., Głowacki S. Modeling of the Drying Process of Apple Pomace. <em>Applied Sciences</em> 2022:12(3):1434. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/app12031434" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/app12031434</a>">https://doi.org/10.3390/app12031434</ext-link>
  24. Sublimācijas iekārtas un tās iespējas (Sublimation equipment and its possibilities). [Online]. [Accessed: 14.12.2022.]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://sublimat.lv/en/276-2/">https://sublimat.lv/en/276-2/</ext-link> (In Latvian)
  25. Luksta I., Mika T., Spalvins K. Extraction of Apple Pomace Using Supercritical CO<sub>2</sub> Extraction. <em>Environmental and Climate Technologies</em> 2023:27(1):980–988. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2023-0071" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2023-0071</a>">https://doi.org/10.2478/rtuect-2023-0071</ext-link>
  26. O’Fallon J. V., Busboom J. R., Nelson M. L., Gaskins C. T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. <em>Journal of Animal Science</em> 2007:85(6):1511–1521. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2527/jas.2006-491" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2527/jas.2006-491</a>">https://doi.org/10.2527/jas.2006-491</ext-link>
  27. High-Resolution GC Analyses of Fatty Acid Methyl Esters (FAMEs) [Online]. [Accessed: 25.04.2024.]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.restek.com/global/en/articles/high-resolution-gc-analyses-of-fatty-acid-methyl-esters-fames">https://www.restek.com/global/en/articles/high-resolution-gc-analyses-of-fatty-acid-methyl-esters-fames</ext-link>
  28. Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. <em>Official Journal of the European Union</em> 2009: L 54/1
  29. Soma Y., <em>et al.</em> In-Needle Pre-Column Derivatization for Amino Acid Quantification (iPDAQ) Using HPLC. <em>Metabolites</em> 2022:12(9):807. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/metabo12090807" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/metabo12090807</a>">https://doi.org/10.3390/metabo12090807</ext-link>
  30. Shimadzu recommends YMC columns Product Information [Online]. [Accessed 09.01.2024.]. Available: www.ymc.de
  31. Yust M. M., Pedroche J., Giron-Calle J., Vioque J., Millan F., Alaiz M. Determination of tryptophan by high-performance liquid chromatography of alkaline hydrolysates with spectrophotometric detection. <em>Food Chemistry</em> 2004:85(2):317–320. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.foodchem.2003.07.026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.foodchem.2003.07.026</a>">https://doi.org/10.1016/j.foodchem.2003.07.026</ext-link>
  32. Çevikkalp S. A., Löker G. B., Yaman M., Amoutzopoulos B. A simplified HPLC method for determination of tryptophan in some cereals and legumes. <em>Food Chemistry</em> 2016:193:26–29. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.foodchem.2015.02.108" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.foodchem.2015.02.108</a>">https://doi.org/10.1016/j.foodchem.2015.02.108</ext-link>
  33. Lisci S., <em>et al.</em> Valorizing brewer’s spent grain: A sequential pathway of supercritical extraction, hydrolysis, and fermentation. <em>Chemical Engineering Science</em> 2024:285:119620. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ces.2023.119620" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ces.2023.119620</a>">https://doi.org/10.1016/j.ces.2023.119620</ext-link>
  34. Oliveira A. S., Ferreira C., Pereira J. O., Pintado M. E., Carvalho A. P. Valorisation of protein-rich extracts from spent brewer’s yeast (Saccharomyces cerevisiae): an overview. <em>Biomass Conversion and Biorefinery</em> 2022:1–23. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13399-022-02636-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13399-022-02636-5</a>">https://doi.org/10.1007/s13399-022-02636-5</ext-link>
DOI: https://doi.org/10.2478/rtuect-2024-0028 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 356 - 366
Submitted on: Apr 26, 2024
Accepted on: Jun 19, 2024
Published on: Sep 12, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Ilze Luksta, Taras Mika, Kriss Spalvins, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.