References
- Maicas S. The Role of Yeasts in Fermentation Processes. Microorganisms 2020:8(8):1–8. https://doi.org/10.3390/microorganisms8081142
- Matraxia M., et al. Non-conventional yeasts from fermented honey by-products: Focus on Hanseniaspora uvarum strains for craft beer production. Food Microbiology 2021:99:103806. https://doi.org/10.1016/j.fm.2021.103806
- Singh Nee Nigam P., Pandey A. Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues. Biotechnology for Agro-Industrial Residues Utilisation 2009:1–466. https://doi.org/10.1007/978-1-4020-9942-7
- Kerby C., Vriesekoop F. An Overview of the Utilisation of Brewery By-Products as Generated by British Craft Breweries. Beverages 2017:3(2):24. https://doi.org/10.3390/beverages3020024
- Ferreira I. M. P. L. V. O., Pinho O., Vieira E., Tavarela J. G. Brewer’s Saccharomyces yeast biomass: characteristics and potential applications. Trends in Food Science & Technology 2010:21(2):77–84. https://doi.org/10.1016/j.tifs.2009.10.008
- Marson G. V., de Castro R. J. S., Belleville M. P., Hubinger M. D. Spent brewer’s yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications. World Journal of Microbiology and Biotechnology 2020:36:(7):1–22. https://doi.org/10.1007/s11274-020-02866-7
- Hejna A. More than just a beer—the potential applications of by-products from beer manufacturing in polymer technology. Emergent Materials 2022:5(3):765–783. https://doi.org/10.1007/s42247-021-00304-4
- Capece A., Romaniello R., Siesto G., Romano P. Conventional and Non-Conventional Yeasts in Beer Production. Fermentation 2018:4(2):38. https://doi.org/10.3390/fermentation4020038
- Kokkinomagoulos E., Kandylis P., Sustainable Exploitation of By-Products of Vitivinicultural Origin in Winemaking. Proceedings 2020:67(1):5. https://doi.org/10.3390/ASEC2020-07521
- Romano P., Paraggio M., Turbanti L., Stability in by-product formation as a strain selection tool of Saccharomyces cerevisiae wine yeasts. Journal of Applied Microbiology 1998:84:3:336–341. https://doi.org/10.1046/j.1365-2672.1998.00345.x
- Varelas V., Tataridis P., Liouni M., Nerantzis E. T. Valorization of Winery Spent Yeast Waste Biomass as a New Source for the Production of β-Glucan. Waste and Biomass Valorization 2016:7(4):807–817. https://doi.org/10.1007/s12649-016-9530-4
- Baptista S. L., Romaní A., Cunha J. T., Domingues L., Multi-feedstock biorefinery concept: Valorization of winery wastes by engineered yeast. Journal of Environmental Management 2023:326:116623. https://doi.org/10.1016/j.jenvman.2022.116623
- Remize F., Roustan J. L., Sablayrolles J. M., Barre P., Dequin S., Glycerol Overproduction by Engineered Saccharomyces cerevisiae Wine Yeast Strains Leads to Substantial Changes in By-Product Formation and to a Stimulation of Fermentation Rate in Stationary Phase. Applied and Environmental Microbiology 1999:65(1):143–149. https://doi.org/10.1128/AEM.65.1.143-149.1999
- Oliveira A. S., Ferreira C., Pereira J. O., Pintado M. E., Carvalho A. P., Valorisation of protein-rich extracts from spent brewer’s yeast (Saccharomyces cerevisiae): an overview. Biomass Conversion and Biorefinery 2022:1–23. https://doi.org/10.1007/s13399-022-02636-5
- Srinivas K., King J. W., Monrad J. K., Howard L. R., Hansen C. M., Optimization of Subcritical Fluid Extraction of Bioactive Compounds Using Hansen Solubility Parameters. Journal of Food Science 2009:74(6):E342–E354. https://doi.org/10.1111/j.1750-3841.2009.01251.x
- Casquete R., Benito M. J., Martín A., Martínez A., Influence of different extraction methods on the compound profiles and functional properties of extracts from solid by-products of the wine industry. LWT- Food Science and Technology 2022:170(1):114097. https://doi.org/10.1016/j.lwt.2022.114097
- Sancho-Galan P., Amores-Arrocha A., Jimenez-Cantizano A., Palacios V. Physicochemical and Nutritional Characterization of Winemaking Lees: A New Food Ingredient. Agronomy 2020:10(7):996. https://doi.org/10.3390/agronomy10070996
- Valero E., Millan C., Ortega J. M., Mauricio J. C. Concentration of amino acids in wine after the end of fermentation by Saccharomyces cerevisiae strains. Journal of the Science of Food and Agriculture 2003:83(8):830–835. https://doi.org/10.1002/jsfa.1417
- Prusova B., Humaj J., Sochor J., Baron M. Formation, Losses, Preservation and Recovery of Aroma Compounds in the Winemaking Process. Fermentation 2022:8(3):93. https://doi.org/10.3390/fermentation8030093
- Duarte S. H., dos Santos P., Michelon M., de P. Oliveira S. M., Martínez J., Maugeri F. Recovery of yeast lipids using different cell disruption techniques and supercritical CO2 extraction. Biochemical Engineering Journal 2017:125:230–237. https://doi.org/10.1016/j.bej.2017.06.014
- Hegel P. E., Camy S., Destrac P., Condoret J. S. Influence of pretreatments for extraction of lipids from yeast by using supercritical carbon dioxide and ethanol as cosolvent. 2011:58(1):68–78. https://doi.org/10.1016/j.supflu.2011.04.005
- Kruk M., Varmanen P., Edelmann M., Chamlagain B., Trząskowska M. Food by-product valorisation in nutrients through spent brewer’s yeast bioprocessing with Propionibacterium freudenreichii. Journal of Cleaner Production 2020:434:140102. https://doi.org/10.1016/j.jclepro.2023.140102
- Tulej W., Głowacki S. Modeling of the Drying Process of Apple Pomace. Applied Sciences 2022:12(3):1434. https://doi.org/10.3390/app12031434
- Sublimācijas iekārtas un tās iespējas (Sublimation equipment and its possibilities). [Online]. [Accessed: 14.12.2022.]. Available: https://sublimat.lv/en/276-2/ (In Latvian)
- Luksta I., Mika T., Spalvins K. Extraction of Apple Pomace Using Supercritical CO2 Extraction. Environmental and Climate Technologies 2023:27(1):980–988. https://doi.org/10.2478/rtuect-2023-0071
- O’Fallon J. V., Busboom J. R., Nelson M. L., Gaskins C. T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science 2007:85(6):1511–1521. https://doi.org/10.2527/jas.2006-491
- High-Resolution GC Analyses of Fatty Acid Methyl Esters (FAMEs) [Online]. [Accessed: 25.04.2024.]. Available: https://www.restek.com/global/en/articles/high-resolution-gc-analyses-of-fatty-acid-methyl-esters-fames
- Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. Official Journal of the European Union 2009: L 54/1
- Soma Y., et al. In-Needle Pre-Column Derivatization for Amino Acid Quantification (iPDAQ) Using HPLC. Metabolites 2022:12(9):807. https://doi.org/10.3390/metabo12090807
- Shimadzu recommends YMC columns Product Information [Online]. [Accessed 09.01.2024.]. Available: www.ymc.de
- Yust M. M., Pedroche J., Giron-Calle J., Vioque J., Millan F., Alaiz M. Determination of tryptophan by high-performance liquid chromatography of alkaline hydrolysates with spectrophotometric detection. Food Chemistry 2004:85(2):317–320. https://doi.org/10.1016/j.foodchem.2003.07.026
- Çevikkalp S. A., Löker G. B., Yaman M., Amoutzopoulos B. A simplified HPLC method for determination of tryptophan in some cereals and legumes. Food Chemistry 2016:193:26–29. https://doi.org/10.1016/j.foodchem.2015.02.108
- Lisci S., et al. Valorizing brewer’s spent grain: A sequential pathway of supercritical extraction, hydrolysis, and fermentation. Chemical Engineering Science 2024:285:119620. https://doi.org/10.1016/j.ces.2023.119620
- Oliveira A. S., Ferreira C., Pereira J. O., Pintado M. E., Carvalho A. P. Valorisation of protein-rich extracts from spent brewer’s yeast (Saccharomyces cerevisiae): an overview. Biomass Conversion and Biorefinery 2022:1–23. https://doi.org/10.1007/s13399-022-02636-5