Maicas S. The Role of Yeasts in Fermentation Processes. <em>Microorganisms</em> 2020:8(8):1–8. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/microorganisms8081142" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/microorganisms8081142</a>">https://doi.org/10.3390/microorganisms8081142</ext-link>
Kerby C., Vriesekoop F. An Overview of the Utilisation of Brewery By-Products as Generated by British Craft Breweries. <em>Beverages</em> 2017:3(2):24. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/beverages3020024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/beverages3020024</a>">https://doi.org/10.3390/beverages3020024</ext-link>
Ferreira I. M. P. L. V. O., Pinho O., Vieira E., Tavarela J. G. Brewer’s Saccharomyces yeast biomass: characteristics and potential applications. <em>Trends in Food Science & Technology</em> 2010:21(2):77–84. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.tifs.2009.10.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tifs.2009.10.008</a>">https://doi.org/10.1016/j.tifs.2009.10.008</ext-link>
Marson G. V., de Castro R. J. S., Belleville M. P., Hubinger M. D. Spent brewer’s yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications. <em>World Journal of Microbiology and Biotechnology</em> 2020:36:(7):1–22. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11274-020-02866-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11274-020-02866-7</a>">https://doi.org/10.1007/s11274-020-02866-7</ext-link>
Hejna A. More than just a beer—the potential applications of by-products from beer manufacturing in polymer technology. <em>Emergent Materials</em> 2022:5(3):765–783. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s42247-021-00304-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s42247-021-00304-4</a>">https://doi.org/10.1007/s42247-021-00304-4</ext-link>
Capece A., Romaniello R., Siesto G., Romano P. Conventional and Non-Conventional Yeasts in Beer Production. <em>Fermentation</em> 2018:4(2):38. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/fermentation4020038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/fermentation4020038</a>">https://doi.org/10.3390/fermentation4020038</ext-link>
Romano P., Paraggio M., Turbanti L., Stability in by-product formation as a strain selection tool of <em>Saccharomyces cerevisiae</em> wine yeasts. <em>Journal of Applied Microbiology</em> 1998:84:3:336–341. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1046/j.1365-2672.1998.00345.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1046/j.1365-2672.1998.00345.x</a>">https://doi.org/10.1046/j.1365-2672.1998.00345.x</ext-link>
Varelas V., Tataridis P., Liouni M., Nerantzis E. T. Valorization of Winery Spent Yeast Waste Biomass as a New Source for the Production of β-Glucan. <em>Waste and Biomass Valorization</em> 2016:7(4):807–817. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s12649-016-9530-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12649-016-9530-4</a>">https://doi.org/10.1007/s12649-016-9530-4</ext-link>
Baptista S. L., Romaní A., Cunha J. T., Domingues L., Multi-feedstock biorefinery concept: Valorization of winery wastes by engineered yeast. <em>Journal of Environmental Management</em> 2023:326:116623. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jenvman.2022.116623" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jenvman.2022.116623</a>">https://doi.org/10.1016/j.jenvman.2022.116623</ext-link>
Remize F., Roustan J. L., Sablayrolles J. M., Barre P., Dequin S., Glycerol Overproduction by Engineered Saccharomyces cerevisiae Wine Yeast Strains Leads to Substantial Changes in By-Product Formation and to a Stimulation of Fermentation Rate in Stationary Phase. <em>Applied and Environmental Microbiology</em> 1999:65(1):143–149. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1128/AEM.65.1.143-149.1999" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AEM.65.1.143-149.1999</a>">https://doi.org/10.1128/AEM.65.1.143-149.1999</ext-link>
Oliveira A. S., Ferreira C., Pereira J. O., Pintado M. E., Carvalho A. P., Valorisation of protein-rich extracts from spent brewer’s yeast (Saccharomyces cerevisiae): an overview. <em>Biomass Conversion and Biorefinery</em> 2022:1–23. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13399-022-02636-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13399-022-02636-5</a>">https://doi.org/10.1007/s13399-022-02636-5</ext-link>
Srinivas K., King J. W., Monrad J. K., Howard L. R., Hansen C. M., Optimization of Subcritical Fluid Extraction of Bioactive Compounds Using Hansen Solubility Parameters. <em>Journal of Food Science</em> 2009:74(6):E342–E354. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1750-3841.2009.01251.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1750-3841.2009.01251.x</a>">https://doi.org/10.1111/j.1750-3841.2009.01251.x</ext-link>
Casquete R., Benito M. J., Martín A., Martínez A., Influence of different extraction methods on the compound profiles and functional properties of extracts from solid by-products of the wine industry. <em>LWT- Food Science and Technology</em> 2022:170(1):114097. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.lwt.2022.114097" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.lwt.2022.114097</a>">https://doi.org/10.1016/j.lwt.2022.114097</ext-link>
Sancho-Galan P., Amores-Arrocha A., Jimenez-Cantizano A., Palacios V. Physicochemical and Nutritional Characterization of Winemaking Lees: A New Food Ingredient. <em>Agronomy</em> 2020:10(7):996. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/agronomy10070996" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/agronomy10070996</a>">https://doi.org/10.3390/agronomy10070996</ext-link>
Valero E., Millan C., Ortega J. M., Mauricio J. C. Concentration of amino acids in wine after the end of fermentation by <em>Saccharomyces cerevisiae</em> strains. <em>Journal of the Science of Food and Agriculture</em> 2003:83(8):830–835. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/jsfa.1417" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jsfa.1417</a>">https://doi.org/10.1002/jsfa.1417</ext-link>
Duarte S. H., dos Santos P., Michelon M., de P. Oliveira S. M., Martínez J., Maugeri F. Recovery of yeast lipids using different cell disruption techniques and supercritical CO<sub>2</sub> extraction. <em>Biochemical Engineering Journal</em> 2017:125:230–237. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bej.2017.06.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bej.2017.06.014</a>">https://doi.org/10.1016/j.bej.2017.06.014</ext-link>
Hegel P. E., Camy S., Destrac P., Condoret J. S. Influence of pretreatments for extraction of lipids from yeast by using supercritical carbon dioxide and ethanol as cosolvent. 2011:58(1):68–78. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.supflu.2011.04.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.supflu.2011.04.005</a>">https://doi.org/10.1016/j.supflu.2011.04.005</ext-link>
Tulej W., Głowacki S. Modeling of the Drying Process of Apple Pomace. <em>Applied Sciences</em> 2022:12(3):1434. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/app12031434" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/app12031434</a>">https://doi.org/10.3390/app12031434</ext-link>
Sublimācijas iekārtas un tās iespējas (Sublimation equipment and its possibilities). [Online]. [Accessed: 14.12.2022.]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://sublimat.lv/en/276-2/">https://sublimat.lv/en/276-2/</ext-link> (In Latvian)
Luksta I., Mika T., Spalvins K. Extraction of Apple Pomace Using Supercritical CO<sub>2</sub> Extraction. <em>Environmental and Climate Technologies</em> 2023:27(1):980–988. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2023-0071" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2023-0071</a>">https://doi.org/10.2478/rtuect-2023-0071</ext-link>
O’Fallon J. V., Busboom J. R., Nelson M. L., Gaskins C. T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. <em>Journal of Animal Science</em> 2007:85(6):1511–1521. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2527/jas.2006-491" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2527/jas.2006-491</a>">https://doi.org/10.2527/jas.2006-491</ext-link>
Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. <em>Official Journal of the European Union</em> 2009: L 54/1
Çevikkalp S. A., Löker G. B., Yaman M., Amoutzopoulos B. A simplified HPLC method for determination of tryptophan in some cereals and legumes. <em>Food Chemistry</em> 2016:193:26–29. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.foodchem.2015.02.108" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.foodchem.2015.02.108</a>">https://doi.org/10.1016/j.foodchem.2015.02.108</ext-link>
Oliveira A. S., Ferreira C., Pereira J. O., Pintado M. E., Carvalho A. P. Valorisation of protein-rich extracts from spent brewer’s yeast (Saccharomyces cerevisiae): an overview. <em>Biomass Conversion and Biorefinery</em> 2022:1–23. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13399-022-02636-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13399-022-02636-5</a>">https://doi.org/10.1007/s13399-022-02636-5</ext-link>